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ABSTRACT

This study is concerned with information theory and its

relevance to the study of complex systems. When information about

every detail of their activity is kept, many systems are too complex

to be manageable and can only be dealt with by sacrificing detail.

It is shown here that multivariable information theory is capable

of eliminating much detail while preserving information about the
interrelations between parts of a system, even when those interrelations
are very complex. A procedure is described and exemplified, for
example, which is helpful in the decomposition of hierarchical systems.

It is shown, among other results, that when two variables
are related (in the set theoretic sense) the transmission between
them is maximized when their behaviors are isomorphic. This obser-
vation leads to an algorithm for the computation of channel capacity
for arbitrary finite-state systems of a very general type.

The importance of information in regulatory processes is
discussed and quantified, and several basic regulatory schemes are
discussed in terms of the information involved, showing in an exact
way how information transfer and channel capacity limit the ability

of any system to act as a successful regulator.
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I. ZINTRODUCTION

Norbert Wiener defined Cyberretics as the science of centrol
and communication, in the animal and machinel. By that definition,
this paper could be called a cybernetic study, for it is concerned with
communication within and between systems, and alsc with the role of
communication in control.

When science attempts to gain insight intc real-world systems,
it invariably begins by dismissing, explicitly or impliecitly, many of
the variables which might be considered but which are thought to be
irrelevant or inconsequential. A scientist studying maze-learning in
rats might consider the phase of the moon, the length of the rat's
tail, the color of the experimenter’s tie, and so on as variables, but
in fact he would be silly to do so unless he had reason to think them
relevant. Science deals not with real-world "systems" but only with
models, i.e., abstracted versions, of them.

Until recently, the systems which were studied were sufficiently
simple that after all of the irrelevant variables were discarded, the
number remaining was small enough to give a manageable model. When
genuinely complex systems are tackled, however, the cld prccedure
doesn't work; either one is forced to discard relevant variables to
get a model of manageable complexity, which is then of poor quality,
or else one ends up with a model which is of good quality but itself
unmanageably complex.

The information theory of complex systems, which is the

.

subject of this paper, can in a sense be viewed as a way cf dealing
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with the latter type of model, by discarding details and only keeping
information about its functional structure--which variables affect
which and to what degree, which variables are statistically "close" to
which others, and so on. Chapters II, III, and IV are concerned with
this "communication structure" of systems.

The information theory used here is not the highly specialized
theory developed for use in sophisticated communications systems, but

rather is an outgrowth of the suggestion by McGillz, Ga.rner3

Asl'xby',+ that the theory formulated by Shannon5

, and
could be extended to n
variables and could be usefully applied to the study of relations in
systems of many variables.

Information theory is important for the study of complex
systems in another closely related respect. Most complex systems
found in nature, and many of man's complex constructs, survive by
acting appropriately on the basis of information they receive; they
regulate their actions on the basis of information. That virtually
all organisms which have survived the process of natural selection
have information sensors bears witness to the importance of information
to survival. Indeed, the almost incredible sensitivity and delicacy
of the sensory apparati developed in the course of evolution lead one
to suspect that primacy in the "struggle for survival" goes to those
who can best obtain and use information; we humans have at least five
distinct systems for taking in information from the environment, and
additional systems for sensing our internal conditions.

The channel capacity of a system is a bound on the ability

of the system to accept, transform, and act on incoming information,




and as such it is a quantity important for the survival of the system.
In chapter IIT is introduced an algorithm for the calculation of channel
capacity for a very general type of system; in chapter IV information
transfer in systems is discussed in more general terxﬁso

Chapter V, on Regulation, was inspired by but goes consider-
ably beyond Ashby's Law of Reguisite Variety6° In that chapter we
discuss the relationship between regulation and information transfer

and show that the two are closely linked.



II. NOTATIONS AND CONVENTIONS

Introduction

Section 2.1 will set the basic notations to be used hereafter.
It does not contain any new material. Section 2.2 will provide
conversion techniques between discrete-variable and continuous-variable
distributions, allowing us to deal thereafter with discrete distributions
only. Section 2.3 will justify our exclusive use of the discrete time

variable.

2.1 Basic notations

Matrices will be denoted by underlined Latin capitals, e.g., 4,

Constants will be denoted by lower case Latin letters, usually
early in the alphabet, e.g., a, h, m e

Sets will be denoted by Latin capitals or by braces enclosing the
elements, e.g., B = {bl, b2, b3} .

Variables will be denoted by upper case Latin capitals usually

toward the end of the alphabet, e.g., X, Y. Compound variables whose

components are shown explicitly will be denoted with < and > signs,

e.g., <Xl, X,> or even <X, <Yl, Y2> , 2>, If S is an ordered set

2
of variables {Xl, X2, cooy XM} , <8> is the compound variable

<x X , 000’ XM>O

1’ T2




Values taken by a variable will be denoted by lower case versions
of the letter representing the variable, possibly with subscripts. The
set of values a variable can take will be denoted by the Latin capital
representing the variable. For example, the set X = i:xl, X5 s x3‘} is
the set of values taken by variable X. Using the same symbol for the
veriable and its set of values is often convenient, and the context will
always make clear in which sense the symbol is being used.

Values of a variable, being merely the elements of a set associated
with a variable, need not be numbers, and no metric is implied. If the
set is finite, the elements may be ordered and numbered arbitrarily for
convenience, and it is frequently useful to deal with such numbers as
equivalent to the values, e.g., to equate "X takes its third value"
with "X = 3",

Functions will be denoted by lower case Greek letters, or by f or
g&. The domain and range sets are a fundamental part of a function's
definition; they are displayed as, for instance, fl : Y > A, which is
read "Function f, maps Y into A",

A system S is an ordered set of variables, and the variables are

members of S. By system S we will also mean the product set whose

components are the value-sets for the variables in 8. If there is a
relation (in the set theoretic sense) over the members of S, the subset
of the product set implied by that relation will be called the system
relation; some authors use the term system to refer to what is here
called the system relation. If the variables in S are associated with
machines, "the system" can also refer to the collection of machines, if
no confusion results. The term system may thus be used in three distinct

ways; this should cause no confusion in practice.



A system-value is an ordered N-tuple with one component for each
variable in S; e.g., S = {xl, X, 5 x3} has the value <2, 4, 5> when

X, =2, X, =k, and X, = 5.

1 3

A Machine-with Input (MWI) is a sequential machine described by

a function of the form £ : S° x I° —> Stﬂ‘, that is, §¥L = f(st, it),

where s¥ is the "state" at time -« and i® the "input". This is usually
written f : S x I > S with the understanding that f maps the "present"
state and input into the "next" state. A MWI is diagrammatically
represented as shown in Figure 1. Both I and S may be product sets.

A Mapper is a machine described by a function of the form

Y that is, o° = g(i%), in which o¥ is the "output" at time <

g : It -> 0
and i= the "input". This is usually written g : I -» O with the under-
standing that g maps the "present” input into the "present" output.

A mapper is represented as shown in Figure 2.

A Moore automaton is a machine consisting of a MWI £ : Sx I — S

plus a mapper g : S —> O, as shown in Figure 3.

A frequency table associated with a system S = {Xl’ Xoy coos XM}
is an M-dimensional matrix whose entries are all nonnegative real numbers.
It is denoted N(X,, Xy woos xM), N(S), or just N if the argument is
understood. The typical element in N is ne oy X ? with

2 L

2’ N
particular subscripts indicating particular system-values. ZEach element

o eoy

gives the real number (ordinarily, an integer) associated with the
frequency of the system-value to which it corresponds; e.g., if

S = {Xl, Yl, Y2} , the entry n2, h, 5 = 3 indicates three occurrences
of the triple <X;, ¥;, ¥, > = <2, 4, 5>. The sum of all entries in

a table N(S) is denoted by N(S) or just N,




Figure 1.

Figure 2.

Figure 3.
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Thus N gives the frequencies of occurrence of all the system-
values; the entries of N are presumably obtained from some data-gathering
process, perhaps by observation of a physical system over a long period.
It is not our purpose here to discuss how frequency tables may be obtained,
but only to deal with tables already provided.

If a system relation holds over the members of S, some of the
entries of N will necessarily be zero, and conversely. (1t N is one-
dimensional, the relation becomes a property in set theoretic language. )
Somewhat more generally, N can be interpreted, after suitable normali-
zation, as the characteristic function, and therefore the descriptor,
of an M- ary fuzzy relation7 on S.

A frequency table associated with S = {Xl, Xa, ceey XM} can
also be associated with other systems, derived from S by grouping the
variables in various ways. For example if S = ghxl, X2, X3} and
Y = <ZX2, X3 >, the frequency table can be associated with the system
S' = {Xl, Y} . This just amounts to noting the obvious fact that an
n-tuple of variables can be considered as a single variable with a
new name.

An important operation on N(X;, Xy, «-. Xy) is that of collapsing

the frequency table over one or more of its dimensions (variables).

Collapsing over X, gives a new table E(Xl, Xos eoes Xy 15 Xigqs ooes XM)

whose entries are obtained by summing over the X; dimension:

=) L, X, e, X
nxl, x2, 000 Xinvl’ Xi+l, eooy X‘M Z l’ 2’ b M
X

For example, collapsing N(X, Y) over X gives N(Y):




’

o 2| & Y
X 1 3 1 1 5 P
N(X,Y) | N(Y)

-l -

For a one-dimensional frequency table g\x), the entropy of X,

denoted H(X), is defined to be zero if N = O and is defined as follows
if N > O:

H(X)

i

i
NA
ZENB

'—J

[e]

mUQ

=],

It

'1']\}‘ [N 1og2N - Z ny logerxX ] o

The summation runs over all the cells in the frequency table.
Henceforth, in accordance with information theory standards, we
will assume logarithms are always to base 2, so that the unit for
entropy, etc. is the bit.
With an M-dimensional frequency table E(Xl, Xys oees XM) for a

system S = {Xl, X2, coes XM}, the entropy of system S, denoted

H(Xl, X5 oeey xM), H(S), or H(N), is zero if N = O and otherwise is

defined by

n 43
. X1 5Xn,000,X X1 ,X5y000,X
=_§§ § 1>32s oM 4 15825+« o 38M
H(Xl’xz””’XM) ) = og =

X X X
1 2

M

the summation running over all cells in _II(S)°
The expression nX./N may be interpreted as a probability, if this
i

interpretation is useful, but to avoid unnecessary connotations we will
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generally avoid doing so. The term "probability" carries a connotation
of permanence and reference to future events, while the frequency table
connotes a reference to events of the past - although the table in the
abstract is of course just an array of numbers, with no time reference.
If the assumptions under which a system is being studied allow
the probability density function to be meaningfully defined, then the

probability density function for a system S = { Xl, X2, sy XMRE is

denoted p(Xl, Xps coes XM) or p(S) and is defined in the ordinary way.

In this case, H(X) and H(S) are defined as follows:

H(X) = - S p(X) log p(X) ax

- 0b
o o0 o0
H(S) = - S j g DX Xy 502 5K,) 10g (X Xp5e 0 5%y)
-0 ~0b -0
1M Py

The operation of collapsing a frequency table over a variable X;

corresponds, with probability densities, to integration over Xi:

O

P(X15 Xpy ooos Xy.75 Xgups oo Xpy) = j p(Xy5 Xo, 0.5 Xy) dXy
- 00
The relation between discrete and continuous distributions will

be considered in more detail in section 2.2.

For N(X,Y), the entropy of X conditional on Y is denoted by

HY(X) and defined by
Hy(X) = H(X, ¥) - H(Y)

To obtain H(Y) from N{(X,Y) requires collapsing N over the X-dimension,
thus obtaining N(Y); H(Y) is then obtained from N(Y).

The obvious generalization of HY(X) is HYl,Ya,...,Yn(xl’XE"'°’XM);




11
if Sl = {'Xl,Xg,ooo,Xm} and 82 = { Yl,ngnooykn} , this can be denoted
HSZ(Sl), the entropy of §, conditional on So, and defined by

HSQ(SI) = H(Sl\)Sz) - H(Se),

are disjoint. The

Normally, H, (S,) is of interest only if S. and S
32 1 1 2

set SlU S, 1s an ordered set, just as S4 and S, are ordered sets.

For a two-dimensional table Q(X,Y)s the transmissicn between

X and Y, denoted T(X : Y), is defined by

(X : ¥) = H(X) + H(Y) - H{X, Y).
The expressiom on the right is equal to H{X) - HY(X) and to H{Y) - HX(Y),
but we take the definition above as primary.

T(X : Y) can be generalized in the obvious way to T(Sl : S2),

but it can be generalized in a more fundamental way by introducing more
single variables. The total transmission over the system S =={X1,X2,,,,,XM} R
denoted T(xl D SO xM), T(S), or T(N) where N is the frequency

table for S, is zero if S contains only one variable and otherwise is

defined by

T(xl P Xyt ees xM) = H(Xl) + H(Xz) + .. H(XM)

- H(Xy, X5, o0oy Xydo
T(S) is a measure of the total comstraint holding between all the vari-
ables in S - a measure of the degree to which the variables are statis-
tically interdependent. If T(S) = O, the system relation is of a
degenerate type, being merely the conjunction cf one-dimensional
properties on the several variables., (These statements will be justified

later.)
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The transmission over a system S, = ﬂ-xl, Xpy oees X;}' conditional

on S, = {Yl, Yo, .. Yn} is denoted by Ty Yn(xl D CUERRRY Xm)

l, Y2’ LI

or T, (S,) and is defined by
S2 1

T, (S,) =H, (X,) +H, (X,) + ... +H, (X ) - H, (8,).

The transmission between Sl = {Xl, Xa, seey Xm} and SE ={Yl, Y2, onss Yn}

is denoted by T(sl : Sa) and is defined by

T(Sy 2 8,) = T(<Xy, Xpy eees Xp > 8 <Yy, Ypp o0ey X >)
All these entropies, conditional entropies, transmissions, and conditional
transmissions are non-negative quantities measured in bits, and they
all have familiar interpretations discussed in the literature.

A less familiar entity is the interaction. Given a three-

dimensional frequency table N(X, Y, Z), the interaction between X, Y, and

Z is denoted by Q(X, Y, Z) and is defined by

X, Y, 2) = TZ(X YY) -T(X : YY)

It is easy to show, by collecting terms, that

X, Y, Z) = TX(Y : Z2) - T(Y : 2Z)

==TY('X :2) - T(X : 2)

so the definition is actually symmetrical in the variables. X, Y, Z)
is a measure of how much the transmission between two of the variables
is conditional on the third; Q may be either positive, negative, or
zZero.

The interaction between X, ¥, and Z conditional on W, denoted

Qu(X, Y, 2), is defined like Q(X, Y, 2) but with every H subscripted

with a W.
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Q(X, Y, Z) may be generalized in an obvious way to Q(Sls 8,5 83),

or more fundamentally by introducing more variables in the argument. The

n-variable interaction over the system S = i.Xl, Xos ceey Xn}-, denoted

Q(Xy, X5, oo0p ¥y) or Q(S), is defined iteratively as follows:

40

Q(Xl, Xps enes X 15 xn) = Qy (xl, Xys eoes xn_l)
n

= Q(Xls X2’ ey Xn-l)

Interactions have been interpreted and discussed in papers bty Ashb);4

and McGill?.

2.2. Approximate conversions of discrete to continuous distributions

and vice versa

It is frequently convenient to replace a continuous distribution
p(X) on a continuous varieble X by a discrete distribution P(Y)
(= %’ N (Y)) on a discrete variable Y, or to do the reverse. This is
because some operations are easier in the discrete domain, some easier
in the continuous domain. The problem we attack in this section is, what
is the relationship between the entropy of the original distribution
and the entropy of the [:approximately:] transformed distribution? 1In
effect we are looking for a bridge across the gap between continuous -
and discrete - variable information theories, a bridge allowing transfor-
mations in either direction. We shall show that if the transformation

is done with care, the entropies of the original distribution and of its

transform differ only by a constant and that transmissions and interactions

are unaffected by the transformation.
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2.2.1. Transforming a continuous distribution to a discrete distribution

Let Sc = {-Xl, X2, cosy XM:} be a set of continuous variables for

which the probability distribution is p(X;, X5, «.., Xy) = p(S.), and
suppose that for each X, in S, p(Xi) is finite within an interval I.
of finite length Li and is zero (or may be so approximated) outside Iio

Thus,

Iy

(I, need not be a connected interval.) Let I, be divided into N,
i i

i

subintervals I I, , each of length Li/Ni°

i2

© Q0 I
. b bl L
il iNi

Within the space whose edges are Iljl, 12j g seey IMJM, a total

2
probability of

P(Jl, dps +ees .J‘M) =f J‘ f p(Sc)XmdX2...dXM
I, I I

13, 23, My,

is enclosed; the average value of the probability density within that

space is
(s.) P(le Jos oo jM) P(Jl, Jos eeos JM)
p = = -~
c j J cos 5 Xmdxzo,,dXM Vo
Il 12 I
L, L
L Lo By
where V, = o
N Néooo NM

If in each such space p(S.) is replaced by 5(80), the resulting distri-
bution is an approximation to the original, and its quality depends on

the numbers N;j, 1 =i <=M, The entropy of the approximation,




8.) =- S & p(S.) log E(S,)dx dX,. . .dXy

will of course equal, in the limit as all Nw go to infinity, the eatropy

of the original distribution,

C
H(S,) = ~g S 3 p(S,) log p(S,) aX,dX,...dX,.

Il 12 IM
That is,
lim
r —> o0 =
N H o (80) = H(S,).
Né —> o0
N, —> o0
LM i

Now the numbers P(jl, Jos sees jM) constitute a discrete distribution
over a set Sd = { Yl, Y2, ceey YM‘§ of discrete variables, with Yi
corresponding to Xi:

P(Yl = Jl, Y2 = 32, ey YM = JM) = P(Jl’ 323 eeey JM)°

The entropy of this discrete distribution is

N My
H(s,) = 2 » E . 2 . F(3153p50+53y) 108 B(Jy53550--0dy) -
= J = J' = '
2 M

Theorem II.1l

> Q‘
The relation between H(Sd) and Happx( c) is given by

{ NN, ... NM\

g \ .ul .Ll2 coo-LM/"

i5
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Proof':
Since E(Sc) is uniform within each of the volume segments, the

integration necessary for finding Happx(sc) reduces to a summation:

N N N .
l 2 M P(Jlsazi““’jM) P(Jl,'jz"’""jn)
appx(Sc) = ":2;1 }E;1°°° S Vo tog Vo Vo
J17+ do M

- Z z @00 z P(Jl’ j2’ eoey jM) lOg P(jl’ ja’ A | jm)

LD D JEEPR > P(J1s dos eees iu). log Vg

H(S4) + log V.

L]

Q. E. D.
NlNZo ° ONM
LlI‘E L) OIM

approximation depending on the numbers N, Né, coos NM° Clearly this

Therefore, H(S3) & H(S,) + log ), with the quality of the

situation holds even when the approximation to p(Sc) varies, within
2

4

8
As an example, suppose p(X =2-e for X = 0; for this
qZ‘W

reason, from the rigidly defined E(Sc).

distribution H(X) = 2.04 bits. See Figure 4, If p(X) is approximated
as zero outside the interwval [O, h) = I and the interval is divided

into N = 10 equal parts, we obtain the following probabilities for the

subintervals:
subinterval probability
[0, 0.4 ) .1585
(0.4, 0.8) .1523
(0.8, 1.2) <1407
(1.2, 1.6) .1248
[L.6,2 ) .1064
[2, 2.4 ) .0872
(2.4, 2.8) .0686
[2.8, 3.2) .0519
(3.2, 3.6) L0377
(3.6, 4 ) .0264




Figure 4.

e
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Calculating H(S d) with these numbers, and ignoring the fact that they
do not total 1.0000, we obtain

H(Sd) = 3.14 bits
and therefore H(S,) = H(X) = 3.14 - log (}-%) =1.82 Dbits.

If the probabilities for the subintervals are not calculated
exactly but are only approximated, for instance by multiplying p(X)
at one end of the subinterval by L/N = 0.4, other estimates for H(X)
are obtained.

{"Probability" for [ X, X+0.4)= 0.k p(X)} = H(X) = 1.85 bits.

i"Probability" for [x, x+o,u) = 0L p(X+0J+)} = H(X) = 1.78 bits.
All of these values agree reasonably with the true value of 2.0k bits,

considering all the approximations made for the calculation.

2.2.2, Trensforming a discrete distribution into a continuous distribution

Given a discrete distribution P(Sd) on set Sd.=xin, Y5, ...'qn} ’
a continuous distribution can be formed by the reverse of the process
described above; to do so is of little use, however, unless the continuous
distribution thus obtained is subsequently approximated by another
continuous distribution which is easier to deal with -- for which

integrations are easier, for instance.,

2.2.3. The effect of continuous-discrete transformation on transmissipns

and interactions

The entropy of & continuous distribution and its discrete
counterpart differ by a constant (neglecting approximation errors.)
Transmissions between continuous variables, and transmissions between

their discrete counterparts, are equal; T is unaffected, that is to say,
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by the transformation. For suppose we have a set of continuous variables,
Scs with a distribution p(Sc), and a corresponding set of discrete

variables Sy with the transformed distribution P(S4):

T(Sc) = T(Xl LID SR xM) = H(Xl) + H(Xz) .. H(XM)
| " - H(X), Xy 2oy K)o
T(Sq) = T(Yy: Yo ...t Yy) = H(Yy) + H(Y5) + ... + H(Yy)

- H{Yy, Yo, «oey Yy)o

! From the theorem,

|
' cee )

N H(YM) = H(XM) + log (_)

H(Yy) = H(X;) + log(

S (72

H(YZ) = H(XZ) + log(

£|:

N N,...Ny
H(Yy, Y5 oo YM) = H(Xy, Xg5 cees xn) + log|ly 5

T Ty

Therefore

N N
7(34) = [H(Xl) + 103(—%)] + o+ [ H(X,) + 1og<LMM )]

NN ...N

. 12 M

- + e s e
[H(Xl, Xy oen XM) log(LL — )]

12 M

w2

T(S.) + [log (%) ..+ log(%) - log (%z};)]

= T(sc).

O
bd
tJ
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Interactions, which are defined by differences between trans-

missions, are therefore also unaffected by the transformation.

2.2.4. General comments on the transformations

Because transformations between discrete and continuous variables
and distributions are possible, we do not need to make separafe statements
for each type but may confine ourselves for the most part to discrete
variasbles, which are generally easier to handle and which fit more readily
into the framework of machines-with-input and mappers. When it seems
appropriate, we may make explicit statements about the continuous case,
but usually that case will be carried along implicitly.

There is usually a certain amount of error involved in approxi-
mating a continuous distribution p(S,) by another, E(Sc), which is
uniform within each small volume-~the more finely the sample space is
cut, the smaller will be the error, in general. This error corresponds
to "quantization noise," which has been studied elsewhere, and how much
error of this type to allow is a pragmatic question which can only be
decided from case to case.

Some types of distributions do not allow transformation and in
fact are outside the class of distributions information theory can
handle, for instance (with'/* being the unit step function):

p(X) = 0.5 8 (X-0.5) + 0,5/4(}() ~o.5/u(x-1),

See Figure 5.
It is meaningiess to talk of B{X) for any distribution which mixes

delta "functions" with finite fuactions.




p (X)

0'5

0.5

FPigure 5.

\]



2.3. Discrete-time convention

Just as it is generally easier to deal with discrete distribu-
tions, so is it generally easier to deal with time as a discrete
rather than a continuous variable. For one thing, machines-with-
input are defined on the basis of discrete time, as are automata,
and it is with these that we will deal later. For another, the
systems with which one deals in engineering are almost exclusively
those for which the approximation of finite bandwidth is appropriate,
and to which the Sampling_Theorem may therefore be applied to put
time on a discrete basis; the errors involved can be made as small
as desired by reducing the size of the unit time interval or quantum.

Another reason for treating time as a discrete variable is
that we shall frequently be concerned with the values a variable
takes over a time span; the value it takes at time ~ is in effect
a variable; were we to consider all the values over the time span,
we should have to deal with an uncountable number of variables and
an unmanageable situation. By quantizing the time variable, this
problem is avoided.

Finally, much machinery developed for Markov processes 1is
based on the assumption of a discrete time variable, and to take
advantage of that machinery we must employ discrete time. So
henceforth, unless explicit mention is made to the contrary, we will

assume time to be a discrete variable.

22
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IIZ. EOME RESULTS IN INFORMATICN THECRY

Introduction

In this chapter we will discuss several results ir informaticn
theory, whose applications are not limited to the study of crmplex
systems. Since the focus of this paper is cr complex systems, the
results will be discussed with a hias in that direc*ion, but the
results themselves are basically mathematical and applicable to otker
situations. All of the results, however, are useful in the study of
complex systems and find applications, explicitly or impiicitiy, in

the succeeding chapters.

3-1. Operaticns on the frequency table which leave H, T, and Q unchanged

Given E(S), a frequency table for the set of variables S,
certain common operations on N leave all H's, T's, and Q's unchanged.
These are:

1. Permuting the order of the axes (for two variabies,
transposing N; for more variables, permuting the order of
the variables in S = {-Xl, X2, cooy XM?%’ which is an
ordered set.)

2. Changing the order in which the values for a variable are

listed along the axes {for two variables, permuting rows

and/or columns.)



3. Multiplication of all the entries in N by the same positive
constant.
Another operation leaves T's and Q's unchanged but reduces some H's; if

there is a variable Xl in S with two values xl and xi such that

K-n (k o)

xi,Xa,...,XM

nxl’XZ”°”XM
for all values of X2, cosy XM (for two variables, if two rows or
columns are proportional), then N may be partially collapsed by

n

summing over those two values, i.e., by setting
=n +n_,

t
I SUPPRYS VRN T R T 1D .

n' = 0.
xi,X2,,.,,XM

This last statement is a consequence of the Collapsing Theorem
which is proved and discussed in section 3.2 .

We shall use these operations freely in what is to follow,
usually without an explicit reminder of their information-preserving
property. The fact that variables can be relabeled freely is particu-

larly important in several proofs.

3.2. Collapsing theorems and their consequences

Introduction

The operation of collapsing a frequency table N over one of its

dimensions, say over the Xy dimension, reduces the H and the T of the

table. If S = in,Xz,“.,XM} and S' = ixl,xg,...,xM_l} are the




[Ae]
o1

original system and the systewm afier collapsing, th

vy
QO

n

4

T{S'} = T(S; -~ T{<X pene Xy > XM)
= T(g; - T(s" : XM>

(Ashby8 ), showing that H and T both decline by a nonnegative amount .

For interactions,

S Q8] = Q) - gy (€

The sign difference betweer the interactiocn eguation and the others
is a consequence of the definition of Q.

The 2ollapse of N cver Xy corresponds to, or implies, complete
disregard of the value of XMg N', the result, is the table for a system
in which XM is not considered a variable. As such, c¢cllapsing is a
valuable operaticn; but what if cne wishes to keep XM as a variable
while losing the distinction between scme of its values? For example,
if XM takes values 1, 2, 3, L4, and 5, one might be interested only in
whether the value of X is greater than 2, or act. A new variable

X& with two values could be introduced, related te X by s

M | 12345

Xﬁ l 1222

and a new system S' ={¥l, X2, cooy X&&defined; thiz section

XM.19
answers the question of how H(S) and E(S*')}, T{S) and T(S'}, and G}

and Q{8') would be related in that case.



From another point of view, this section is important for the
situation in which a system (or its frequency table) can be observed
only through & mapping which loses information about the variable-
values, as would be the case, for example, if an observer were watching
the state-changes in a Mooré automaton via its many-to-one output
function. The Collapsing Theorems give a means of evaluating how much
the H's, T's, and Q's would decline (or possibly rise, in the case of

interaction) due to the mapping.

3.2.1. Collapsing lemmas

We consider a system S = i_x, Yf§ and its frequency table

N(X, Y) or just N:

Y
N yn ¥ e Vpd Ym
! 3 P vt Bypal Mim
X2 n21 n22 ves
X . ) :
Xy ney ceo ngom-1 Dy,m

We will partially collapse N over Y by combining the last two columns,
representative of combining any two rows or any two columns (see
section 3.1). To this end we define a new variable Z, related to Y
by the mapping /&: Y > Z:

v ¥ v Y1 Y

/A' l Zl Z2 LI Zm_l A

26



The freguency table for §' = {’X, ZK% is N'iX, Z} or just N':

Z
N
zq z, cae Y
11 ™M, S22 e Bppa
2l 821 Moo
X : :
N and N' are related by
. o s 9
ni,j if §j < m-1
n', .=
1,sd
+ if 1 = m=l,
ni,mml ni,m if § = m-1

We denote the sum of the entries in the jth column of N by Nj, and of

course the sum of the Nj's by N. The entropy of the jth coiumn of N
will be denoted H_ (X).
;3

The last two columns cf N comstitute a frequency table

W = NX(X¥,Y%):

Y*
N¥ m-1 Im
1 ™m0 Mym
X2
X* S 3 :
XR nl ,m“’l nxgm

with column entropy H(X*) and row eriropy H{Y¥*),
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The transmission in N* is T(¥*), and the sum of its entries is
N*¥, The Collapsing Lemma for Transmissions in this simplest case is:
Lemma IIT.1
(s) - T(s') = T T(m*)
In words, the transmission lost through partial collapsing is
the transmission contained in the frequency subtable which is collapsed,

times the relative weight of the subtable.

Proof:
T(s) = H(X) - Hy(X)
= H(x) - I;izl P,
= H(x) - }:j y 00 - By () - Ry ()
T(s')= H(X) - jfg.i ah] Hy ,(X) - M Hzp (X)
ns) - 2(s) =By () - By () - By (x)

Npy_1 0 Np1 N
i [Hzm“l(x) Ny Vo1 NZ-l"ﬁmym(X;l

N Mm-1 N
=¥ [H(X*) - By () --D-,-;Hym(X)]

- T [roe) - g0 ]

= [ T(X* : Y*)




n
\O

The Collapsing Lemma for Entrcpy is

Lemma III.2

% .
H(S) - H(S') ~ F~ Hy,/¥*)

The entropy lost through partial eollapsing over Y is the
entropy of Y conditional on X in ths subtable being ccilapsed, multiplied

by the relative weight of the subtable.

I m
Proof; HS) =~ 3} 3 .,..,‘1%1 log =i
i=1 j=1 B N
i m-2 . I3 - N
2 - Z z mJ;ZAi lOg SAad o Z [ l,llnml 10g Bi,mel
i=l = N i=1
n n,
+ .‘;}ﬁz,@ log W;I%JE,
i m-2 n? N nl . i no . r‘!
H(s') =- 2 _i\lf;l log ~id . 7 il jne 1.mel
i=1 j=1 Ny N N
3 m
H(S) - H{8") Z Bi,m-1 "04 m o i,m-l "Ni.m
i=1 N ' N
nj n - I
Mi,m-1 fm-l  Bim 3 m]
4 n
. Z “i,mel TE o log B om-l ™My om
N i= N* N¥
4 n4 n; n.
- dmel g, Bmel  Pimog oo Mim

l

N [:H(x*) + H(X*, Y‘*)]

_ N+ e
= o HX*(Y*;
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Extending the system to three variables, S = {W, X, Y} and
partially collapsing over Y to get S' = {W, X, Z.} , we obtain the
collapsing Lemma for Interactions. N¥ = NX(W¥, X*, Y*) is the three-
dimensional analog of N¥(X*, Y¥), and the collapsing is understood to be
over Y¥*, i.e., over y, 7 and Ym*

Lemma III.3

N*
Qs) - a(s') =§F a(xx)
The interaction is lowered by the interaction in N¥*, suitably
weighted.
Q(s) = q(w, X, Y) = TY(W : X) - T(W : X)
Q(s') =q(w, X, Z) = TZ(W : X) - T(W : X)

Q(8) - Q(8") = Ty(W : X)-T,(W : X)

Np_1 ) Ny .
—_ Tym_l(w : X) + 5 Tym(w : X)

N _+N
- mel mog (W: X)

N Zm-1
NN N )
= -l m) m- T (W:Xx)+2 T (WX
N Ny 1+, Ym-1 Np-1tNy Im
- T (W: X)
‘m-1
*.
=N [TY*(W* s X*) - T(W* : x*)]

= N q(wx, Xx*, y*)

Q1)




Since Q(Eﬁ) may be either positive, negative, or zero, colilapsing
dces not necessarily lower interaction as it 4doeg sntropy and trans-
mission.

The lemma for entropy can be rawrittsn, using the identity

H(X, Y) - RX, Z)= qu - HX{Z),,

in the form
* e
Hy(Y) - He(Z) = §~ Hy, [¥*)

which makes evident the structural similarity between it and the

other lemmas; the form of each is

original o F table after - ¥ £ eollapsed
table, N collapsing, NY N subtable, N* /

with only the operator f differing betwsen the lemmas.

As an example of partially ccllapsing a two dimensicuzl table,
we collapse N{W, X) below over its first two rows, which constitute
N*(Wx, X*), and obtain N'(U, X).

Example:
Original table: N(W, X):

X
1 2 3 H/{W, X) = 2,689 bits
1 1 2 1 T(W : X} = 0.367 bits
W 2 2 1 2 N = 12,
3 3 0 0
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Collapsed subtable: N*(W¥, X*):

X%
1 2 3 Hx*(W*) = 0.918 bits
1 1 2 1 T(W* : X¥) = 0.074 bits
W*
2 2 1 2 N% = 9,

Table after collapsing: N'(U, X):

X
1 2 3 H(U, X) = 2.000 bits
1 3 3 3 T(U : X) = 0.311 bits
0 2 3 0 0 N' =12,

The entropies for the three tables are related by

H(W, X) - H(U, X) = = Hy(W¥)
2.689 - 2.000 = 2, + 0.918 = 0.689

and the transmissions are related by

(W :X)-T(U?: X)= %ﬁ T(W* : X*)

0.367 - 0.311 = gé © 0,074 = 0.056.

Collapsing N over its first two rows lowers the entropy by 0.689 bits
and the transmission by 0.056 bits.

The three lemmas hold also when the subtable is collapsed over
more than two Y-values. Suppose a table N(X, Y) is to be partially
collapsed over its last k columns ~ the columns for VRN VICT R R
- to get EL(X, Z)o This could be done by collapsing the last two

Mk ’
(-
columns (which we denote submatrix @ﬁiz (l)),

(1)

thus obtaining a new matrix N

~and whose entries sum to M

(X19 El); next collapsing the last two




W
o

columns of Nil) {i.e., submatrix M( )Lo gev b\ / X Yé); and s0 on,
finally getting N(k“’l)(xk_,, Ykal} or N'/¥, z% T{X : ¥) ard T{X : Z)

would be related by

TX : Y) - T(X : 2) = [’I\X:Y}»ZX :1,)] + [Ty - T fj

..t [Tix o Y o) = T(X )]
/ ~
(1) 1)
LSy Y I B SO
N —— B s

{k-1)
;Mv
_m__,wm,m(M(k 1)}

+ coo F

Consider the first two terms in the summation. They can be zcmbined

and rewritien as

(2) ‘l) ;
M T(M(':-)‘) + ;f‘“*: T(ML];?}“

3

or, since M(l) is the sum of the entries in the last two cclumms of N

and M(2) is the sum of the entries in the las%t three cclumns of N,

this quantity may be written as
N + N + N N + N
+k +R~] mtk~2 m+k mtk-1 Y
S re2)) - ot
m+k

F N eker Y Voo

The Collapsing Lemma for Transmissions states that this gquantity is

equal to
sum of the entries
in the last three
columns of N X Tragsmission in the
submatrix comprising

N
the last three columns of N
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An argument by induction leads to the conclusion that

(én the last k column Transmission in
(X :Y) -T(X : Z) = of N the submatrix
N comprising the
last k columns
of N

sum of the entries )
s

or, more briefly,

T(X : Y) - (X : 2) = %ﬁ T(N%)
where N¥* is the subtable collapsed, with an arbitrary number of
columns.

Arguments identical in form to this one easily show that the
Collapsing Lemmas for Entropy and Interaction also hold when the

subtables collapsed have an‘arbitrary number of columns.

3.2.2. Collapsing theorems

These lemmas can be further generalized to a system of many
variables, S = { Xl’ X2, ooy XM’ Y:}, for which the frequency table
N = N(S) is to be partially collapsed over the variable Y, with the
table N(S') representing the resulting system S' = {.Xl, Xy5 vees Xy i},
We denote by N* the two-dimensional frequency table, with

<X X2, cooy XMj>* the row-variable and Y¥ the column-variable,

l’

which is to be collapsed by summing over Y¥,

Theorem III.1 (Collapsing Theorem for Transmission, C.T.T.):

T(S) - T(s"')

il

NX o
y— T(N*)

It

N*
- T(<X , X ceny X >¥ 1 Y
N ( 1° "2’ > M )




Proof:

———c o s

T(S) = T(xlzxez cooiXy) + T{ <Xy sy coesXy>t Y)

- &
cooak >3 Zj

T{(S') = T{X X : ...:X )+ T{<X_ X
\ ) ‘l(\, M> Y 1‘) 23 M

- 8T = oeo DY) - TIK L X > T
T(S) - T(S') = T{<X;, oM >0 Y (<K e Xy > Z)
=%{i ™<X, . S M S R ).
4. Il

Q. E. I,

The last step follows directly from the Lemma for Travsmissionsz.

The C.T.T. says that if a table is partially ccllapsed over a

variable Y, the total transmissicm is lowered by the transmission

between ¥ and the rest of the variables, in the collapsed portion,

weighted appropriately.

sSystem

constraint; if observer A views a system directly and cbserver B views

it via

From another point cf view, the C.T.T. says *hat viewing a

through a many-to-one mapping can never increase its apparent

a mapping, the constraint between variables which is apparent

35

to A is always at least as large as the coustraint between the variables’

images which is apparert to B.

Theorem III.2 ({Collapsing Theorem for Extropy, C.T.E.):

Proof:

' - N* .
H(S) - H(8') = &~ HeX ), Xpy oo, XM>*(Y*)

B(S) = B(X,, X,y ooy Xy) +H_y :xM>(Y}

32
oh

H(s') = H(X

!._.I

H{(S) - H(s') =H Y)Y - H v 21z}
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The last step follows from the Lemma for Entropy.

The C.T.E. says that collapsing over part of Y lowers the
entropy by the entropy of Y conditional on all the other variagles, in
the collapsed portion, weighted appropriately.

To obtain the Theorem for Interactions, we assume that
N* = _I‘_If_(Xl*, X*s eees X% Y*) is to be collapsed over part of Y¥,
that is, over the y-values y .., ¥pins s> Ypuc- W€ denote the (M + 1)-
variable interaction in N* by Q(N¥).

Theorem IIT.3 (Collapsing Theorem for Interaction, c.T.I.):

Q(s) - q(s') = ¥ Q)

Proof:
as) = qy(X;, X5 -eos Xy) - (X, X5 een Xy)
Q(s') = QZ(Xl, Xys oo xM) - Q(Xl, Xys vees xM)
QS) - as') = Qu(Xy, «ovy Xy) = QX5 eny X)

mt+k

o) a8 = 2 ENNCTE TR Y
N*
- T sz+1(x1’ Xoy oees Xy)
- 5 :%:ﬂ%& Qyj(xl, Xps wevs Xy)
- sz+1(x1’ Xps eevs xM)]
N

]

¥* .
'IT" Q(xl*, xz*, ceoy XM*, Y*)
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Since interactions may be negative, it is rossible for QI8 )Y +o be
larger thar Q(S), in contrast to the situaticns for H and ™. This
means that when a system is viewed through s many-to-one mapping, the
interaction terms for the image-system may te larger than those for the

original system, i.e., the system may appear tc he more complex /in

¢

S

[ ]

P
¢ Ied.id,

[

some sense) than

3.2.3. Remarks on the theorems

At this point it should be made clear that althcugh some of the
proofs have been stated in terms of "last rows”, "last columns”, etz.
for notational reasons, and have therefore impli=d that the frequency
tables are finite, minor changes in the procfs would remove that
implication; the C.T.T., C.T.E., and C.T.I. apply also to nonfinite
tables.

Moreover, each of the thecrems has a direct analog in terms of
continuous variables. For these, collapsing over certain values of a
variable Y becomes integration over an interval of ¥, and N*/N becomes
the probability of the collapsed portion of the distribution. The
only place at which care is needed is in ths distribution resulting
from the collapsing; the probability which beccomes concentrated in
the collapsing process must be dispersed in a sheet cf finite thickness
to avoid a distribution which mixes delta "functions" with finite
functions, for information theory canrot handle that mixture.

These three theorems - ¢.T.T.; C.T.E., and 2.T.I. - have

several corollaries, among them the following:
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Corollary III.l
a) T(Xy : Xo : ...t Xy) =T(Xy 2 Xp ¢ «un t Xy )
(<X, Xyy wees Ky g > Xy)

b) H(Xl, Xps eens XM) = H(Xl, Xps ooy xM_l)

*H_ (XM)
< l, XQ’ ..‘, XM-1>

These equations, derived elsewhere in the literature, follow from the
C.T.T. and C.T.E. by collapsing over all values of XM‘

The following corollary is a very important one for the decompo-
sition of system constraints, to be studied later. It says, for
example, that if X = < X;,X5,...,X, > and Y = <Y;,Y5,...,Y,> are
independent, then so are any X; and Yj.

Corollary III.2

Let T(Xl : X is a compound

5 ¢
X

ces ¢ XM) = 0, where each X,

: > ' .
veriable <1Xil, 402 °**> xini . If Xi designates a compound
variable whose components are some or all of the Xij's, then
T(X] : X3 ¢ ... @ Xy) = O.
Proof':

Suppose T(Xl : X2 $ oeee o XM) = 0. The previous corollary

implies that
T(Xl: Xyt een s xM-l) = Q
T(<X1, Xps vves Xy g >o xM) = 0.

From the identity T(X: <Y,2>)= T(X : ¥) + 'I‘Y(X : 2) it follows that

and

T(<X., voesy X >: X )=T(<X , «o., X _>: X
(<X e Ky w = T(Xp s Xy W

+ T (<X ,...,X

XM 1 M-1

>: <X -X'>
M M )




L)
0

(where '<XM’X& > ig the compound varisblie wiwse componertis are +the

XM 's not in X&), The left side of the ejuation is zere, and therefore
J

T{ < ovo D Xy o= 0,
L<X), s Ky >t Ay
. . C oty
Consequently T(Xl P Xyt e Xyt XM) 0, for
. . YLy = Y. - .Y pomi e A
T(Xla oo ooXM_l.XM) = T(Xl - o.XMml) + T{ < Xic, 00w 9X’M"‘l> .XM)
=0 + 0,
Similar analysis shows that

1 Xy et Xy ot Xﬁml: X&) = 0

(X

and so on.
Q. E. D.

The next corollary says, to put it picturesquely, that if an
observer of a system can sense only some of the values taken by each
variable, all other values registering only as "outside the range of
the instruments," then he can at least deduce from his observations
some minimum values for the entropy and transmission of the whole
system.

Corollary I1I.3

If H(S) is & frequency table and N* is any hyperrectangular

portion of it, then

a) M) = §- )
b) BN} > I H(W)
Proof':

Suppose a two-variable table g(x, Y) is collapsed over the

submatrix M*(X¥, Y*) consisting of the last k, columns of N, the result
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being HL(X, Z). Next suppose M¥ is collapsed over its submatrix
Efﬂx**, Y**) consisting of the last ky, rows of M¥, the result being
M(W, Y*).

(a) The following two equations follow from the C.T.T.:

(N) - T() = 3 T(MX)
T(Mx) - T(M) = 35 T(NX)

Therefore,

() = o) + 3 [ 10 + 55 T ]

= (W) + 3 T(M) + T T()
M) = & T()

where N¥ is the rectangular portion of N in the last ky columns and
last k, rows. The generalization to more than two variables is obvious,
proving part (a).
(b) The following two equations follow from the C.T.E.:
¥
H(X, Y) - H(X, Z) = %—- [HGxx, vx) - H(x*) ]
N* g

H(X*, Y*) - H(W, ¥*) = 1= [ixee, yor) - H(Y**)]

Therefore,
M* N*
HX, Y) = H(X, 2) + 2 [BOF, %) + iz (H(X**, yox) - H(Y#)
- H(xx) |

M* M N*

[ncx, 2) - ¥ neen)] + B2 [uw, v - 5 neeen) |

+ %ﬁ H(X%%, Y¥**)

H

]

H{Z) + [HZ(X) DNM H(X*'}] + 2 aw)

N
M* o N¥*
» M [Hw(x-*; L H(Y**)]
N*

+ H(N*)
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The first bracketed quantity is ronnegative, for HZ(X) is the average
entropy is the columns of N', cbtained by a weighted summation of the
individual column entropies; %ﬁ H(X*) is the last term in the summation,
and the first quantity in brackets is thus a weighted sum {of non-
negative quantities) over all but the last columr. Therefore it is
nonnegative. The second bracketed quantity is nonnegative for similar
reasons, and thus

H(X, Y) = (a nonnegative quantity)+ %i H{N*)
proving part b for the two-variable case. The generalization to more

than two variables is simple.

Q. E. D,

3920h,‘ The equivalence of transmission and statistical dependence

Corollary III.k, which uses the next Lemma, shows that if a
two-dimensional t;ble has zero tranémission, its columns are proportional,
i.e., that zero transmission implies statistical independenceo.

Lemma III.L
Let N be a 2-by-2 frequency table with T(N) = 0. Then one
column of N is & non-negative multiple of the other.

Proof:

The distribution N may be typified by

1 a
(¢ = 0)

b abc

The second column is a multiple of the first if ¢ = 1, T(E) can be

expressed in terms of a, b, and ¢ as follows.
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T(N) = 3 {. (1 +a+b+abc) log (L +a+ Db+ abe)
- 1l +a+b + abe

+1logl+a log a +b log b + abc log abc
-~ (1 +a)log (L +a)-(1L+Db)log (1L +0b)

- a(l + be) log a(l + be) - b(1 + ac) log b(1 + ac)}°

Assuming T(g) = 0, expanding, rearranging, and cancelling, we obtain
(L +a+Db+abc) log (L +a+b+abc) + abe log c
=(1+a)log (L+a)+ (1L+0Db)log (1L +0b)
+ a(l + be) log (1L + be) + b(1 +ac) log (1 + ac).
Calling the left side f(c) and the right g(c), this equation f(c) = g(c)
has a solution at ¢ =1, i.e., when the second column of N is a

multiple of the first. To show that there are no other finite solutions,

we note that

2%§é£l = ab {_2 logy e + logp(c + ac + be + abcz) }

ji%§§l= = ab i 2 log, e + logg(l + ac + be + abc2)—} .
f(c) equals gl{c) at ¢ = 1, and for ¢ > 1, f(e¢) has a steeper slope
than g(c); this implies that f{¢j > gfe) for ¢ > 1. Similarly,
f(e) < gi{e) for ¢ < 1. Therefore, ¢ =1 is the only finite solution

to f(c) = gle), i.e., to T(N} = O.

Corollary III.h (to C.T,T,):

Let N(X : Y) be a frequency table with m rows (of xi) and
n columns {of yj)o If T(ﬁ) = 0, then the columns of N are
all nonnegative multiples cf NiX}. Thus zero transmission

implies statistical independeunce.
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Proof:

If N has zero-rows or zero-columns, they may be permuted to the
bottom and the right, and coclumns may then be permuted t¢ put a positive
element in the (1, 1) position; this permuted form of N we call N'.
Clearly if the Corcllary is true for N', it is true for N. Suppose
T(N') = T(N) = 0.

Corollary III.3 says that the upper left 2-by-2 submatrix of
N' (in fact, any rectangular submatrix) has zero transmission. The
last Lemma says that the columns of this submatrix are proportionsl,

i.e., that the elements in the second column are k12 times their row-

mates in the first column, with k12 > 0. The same argument shows that
in the submatrix of rows 2 and 3 and columns 1 and 2, the same propor-
tionality holds, and so on for all elements in columns 1 and 2; all
elements in column 2 are k12 times their rowmates in column 1.

Similarly, the elements in column 3 are k2 times their rowmates in

3
column 2, and so on. Finally, each of the columns is proportional to
the column-table EL(X) formed by collapsing N' over its rows.

Q. E. D.

Of course if N(X, Y) has proportional columns it also has
proportional rows; this condition is eguivalent to statistical indepen-
dence of X and Y.

It is well known that if X and Y are statistically independent
variables, T(X : Y) = O. Corollary III.4 shows that the converse also
holds; that if T(x’é Y) = O, then X and Y are statistically independent.

Thus transmission and statistical dependence are eguivalent concepts

couched in different languages.
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The argument easily generalizes to many variables; if T(8) = 0,
then any subset of variables in S is independent of any other (disjoint)
subset.

If the frequency table on hand is the record of an actual
experiment, the transmission must cf course be interpreted in light of
the vagaries of random sampling. To date an adequate test for the

significance level of T has not been produced.

3.3.  Can geruirely complex relatiomships be broken down?

If a system contains many variables interacting in a complex way,
it is frequently impossible for a human observer to keep track of all
of them simultansously. When this happens, it is common for the human
to observe a few variables at a time and then try to piece together
the behavior of the whole from those cbservaticns. Such an attempt
sometimes succeeds and sometimes fails; we want to ask if there is any
theoretical limitation on guch an attempt, specifically with regard to
the informatioun-theoretis quantities invelved.

To put the gquestion vividly: suppose an observer capable of
observing any N or fewer variables at a time is faced with a system of
N + 1 variables. (arn he deduce the erntropy, total transmission, or
highest~order interaction of the system? To approach the problem we
define a few terms,

By a simple expressior we will mean a single entropy, transmissicn,

or interaction term explicitly invclving variables - e.g., H(X),
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TZ(<W, X >: YY), QX1(< X5 X,> X39 _x:u),, An expression is & sum of
simple expressions.

Any simple expression is either identically zero (such as

TX(X:Y)) or may be reduced to a proper simple expression, in which no

variable appears explicitly in both subscript and argument;” for example,

the third example above is identically equal to QX (X23 X33 Xh)’ which
1

is proper. The order of a simple expression is zero if the expression

is identically zero; otherwise it is equal tc the number of distinct
variables appearing explicitly in the expression, whether or not they
are considered to be components of compound variables. The examples

above have orders one, four, and four. The order of an expression is

the largest of the orders of its simple expressiors.

It would be useful to find order-reducing identities -~ identities
which would express a simple expression as a sum of lower-order
expressions, thereby allowing one to view a complex relationship as
merely a summation of simpler relaticns. This is indeed possible
through the device of an auxiliary equation; e.g., if <X,Y> =W
then H(X, Y) = H(W). However, barring the use of auxiliary equations,
no order-reducing identity can exist; relationships which genuinely
involve many variables can not be broken down.

Theorem III. b4

Let f = g be an identity in which f is a simple expression
of finite order M and in which g is an expression of order
K < M (and involving the same variables). Then K = M, i.e., g

contains a simple expression of order M.
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Proof:

(a) We first prove the thecrem when f is an unsubscripted
entropy, f = H(Xl’ Xps ooy XM), by supposing K <M and obtaining a
contradiction. We define two distributions on S = ﬂhxl, XE’ evos XM—§ ’

where each Xi has two values, 1 and 2.

The first, N(§), is defined by
nXl’Xz’“”XM =2 [(Xl Xyt et xM), mod 2]

and the second, N'(S), is defined by

n' = 1.
&l,Xg,o,o,XM

For example, with M = 3 they are as follows:

X, X
1 2 1 2
N 1 2 0 1 0 2

%5 %5

2 0 2 2 2 0

X, =1 ¥y =2
N 1 1 1 1
1 1 1 1

To calculate any simple expreszion involving fewer than M variables
necessitates collapsing N and N' over the variables omitted; when thus
collapsed, N and N' yield identical distributicos and consejuently
identical values for g. The two distributions yield different values

o~

for f, hcwever - an impossible cerndition if f = g is an identity.,
(b) If f is any simple expressicn of crder M, identities of

the following form exist8:
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f =h + H{X

+H{X;, X

s eees X

”
where h 1s an expression of order less than M. Thus f = g may be
rewritten as

+ H(Xy, X5, ones Xy) =g - ho
Part (a) showed that the expresgion on the right is of order M; sirce
the order of h is less than M, the order of g must be M.

Q. E. D,
The theorem does not say that both sides of any identity

must have equal order, and in fact that is not true; for example,

H(X,Y) - HX(Y) = H(X).

It does mean that if a set of variables are acztually related in a
holistic manner, the relation cannot be broken into a sum of simpler
relations without something being lost. While this is perfesctly true
in general, in many cases of practical interest a high-crder relation
can be broken down without losing “%oo much." In section 4.3 we will

study systems which lend themselves to such decompesitions.

3.4 Maximizing transmission between related variables

Introduction

An important problem is the following. Suppose X and Y are
variables taking values from sets X = { X l 1<i szn}- and
Y = {yj \ l<gjs< n} , and suppose R < X x Y is a relation between

X and Y. How should the freguencies in yﬁxs Y} be distributed exclusively
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over the couples in R so that T(X : Y) is maximized? In other words,
how can the transmission be maximized with respect to the constraint R?

While this is an interesting problem in its own right, the
answer is really crucial for the understanding of channel capacity.
For as will be explained in the section or that topie, the descripticn
of a channel linking supervariables X and Y is in fact the description
of a relation between X and Y} and the problem of maximizing TL(i : Y)
(i.e., finding the channel capacity) is the same as the problem
considered here, only with limits involved.

It will be shown in the chapter on regulation that the trans-
mission between the regulator, R, and the variable it is regulating
against, X, is of prime importance in regulation. This section is
therefore also of importance to regulation, particularly when there is

a relation between R and X.

3.4.1. The theorem

We start by denoting the matrix version of R by
R = [r; ] witn
- 1J m,n

1lif <Xi'9yj> is in R,

2[‘:1'j =
0 otherwise,

We consider here only frequency matrices gﬁX,Y) = [nij] m’n,compgtible
with R, i.e., such that couples not in R occur with zero frequency.
Nothing is lost by restricting attemtion to cases in whichm < n and
R has no zero-rows or zero-columns. Since the argument involves

permutations of the rows aud columns of N and R, it will be assumed
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henceforth that when one matrix is permuted, the cther is permuted in
the same way. We denote a permuted form of a matrix with primes.
For every R, there is at least one "largest one-to-one mapping"
M having the following properties:
i} m < B,
ii) M has domain Z C X, where Z contains k elements and k g m,
iii) M maps Z one-to-one onto a subset of Y,
iv) no other mapping exists which obeys (i), {ii}, and
(1ii) but on a larger domain than Mo
The number k, giving the number of elements in /u's domain, is dictated
by R and may be denoted k(R).

The distribution N,» with

1if <Xj5 ¥y is in M

nij 0 otherwise,
gives T(N,) = log k(R). It is always possible to make T{X : Y) = log k(R),
by assigning equal frequencies to the couples in /u; however, by that
assignment it is possible that certain values of X and Y, not excluded
by R, would be assigned zerc frequency. Consequently H{X) and H(Y)
would be lower with the assigmment N, than with some other distributions,
and since

T(X : Y) = H{X) +H(Y) - H{X, Y)
there is good reason to suspect that some distribution other than Nb

will maximize the transmission.

The answer to the question posed above is given by:
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Theorem III.5

Suppose R is a subset of X x Y. Then for any N(X, Y)

compatible with R,

T(N) < log k(R).

and thus N, above maximizes T(N).

To state the theorem somewhat picturesquely, X and Y can
communicate best through a one-to-one mapping, even if the price of the
biuniqueness is that some of their values never get used. It doesn't
pay, as far as transmission is concerned, to introduce more values if
their introduction brings in ambiguity.

Proof':

If k = m, the theorem is obviously true since T(E) < log m for
any distribution N; the smaller dimension of a matrix limits the
transmission. If k < m, we need the following Lemma:

Lemma ITI.5

If k <m, R may be permuted to a form R¥*, which in partitioned

form is
- | | .
A g
R¥ = D | E | F
—— - -
_G. | puond ] .1:.

and in which the square submatrix (ép B, D, g) has an ascending diagonal
of k(R) 1's and the submatrix (E, F, H, 1} is a zero matrix.

Proof of the lLemma:

The mapping M prescribes in a matural way a permutation of R

which displays an ascending diagonal of k{R) 1's across the upper
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left corner of the resuiting mairix, these l's corresperding to
couples in the set Mo Pictorially, R' is then as shown in Figure 6,
with the diagonal line representing a string of 1l's.

The submatrix L must be a zero matrix, because if there were a 1
in L, row and column permutations could append it to the existing
diagonal. Henceforth we will show zerc matrices by shading.

The rows which contain 1's in J may be moved to the top of R',
and appropriate column permutations, always possible, may be performed
to preserve the diagonal of 1's intact. This done, R" is as shown in
Figure 7, wheré J1 has no zero rows. Now K, must be a zero matrix,
since otherwise a column permutaticn could put a 1 in L while preserving
the diagonal,

Next, the columns which contain 1's in K, may be moved to the
left and appropriate row permutations performed to preserve the diagonal.
This gives R", shown in Figure 8, in which K3 has no zero columns.

The process is now repeated with M, ﬁ, and P playing the parts
of J, K, and L; P must be a zero matrix, for if it were not, a sequence
of column permutations could put a 1 in L while preserving the diagonal.
If there are no rows with 1's in M, the Lemma is satisfied; if there
are such rows, they may be moved to the top of M and the diagonal may
be preserved through column permutations. Next the columns with 1l's

in N, if any, are moved to the left side of N while preserving the

diagonal, giving R(LF>

Cam————"

» Shown in Figure 9, where J; and M; have no zero

Trows, and Ei and Ez’have ro zero coclumns.
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This process, iteratively applied to any matrix El) must end
either by disclosing a 1 in a position incompatible with the hypothesis
that the diagonal is maximally long, or else by completion of a rectangle
of zeroes which "touches" the diagonal. This proves the Lemma.

Note that the process described amounts to an effective procedure
for finding the largest one-to-one mapping contained in R (or one of
them, if there are more than one).

Returning to the proof of the theorem, we assume R has been
permuted to the standard form R¥, and that the distribution N, unspeci-
fied as yet, has been similarly permuted (so that it tco has the large

rectangle of zeroes).

- - [ | ]
|
Ny M Mg Yoo 1 M3
——m | | ——— |
*= ————— I———-— =
N N21 : Né2 : N23 where y | . 0.
Ty 32 :_31
31 132 1733 - -
= | | ]

Suppose now that N* is partially collapsed by adding together

the columns in the right-hand submatrices, obtaining Né;

- P R —
Ny My o)
-—=1= -
!
0 $ o
HE N21 P 9 where O has one column
SR DR ---
N ! Q
3s el
i

We recall that permutations do notalter transmission; therefore

T(N*) = T(N). The C.T.T. (theorem I1I.l)} cousequently states that
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ERE
Yo 1 Nyg
ng + N]é e b
T(N) = T(N,) + . T o 1o
o, —— b o
o o
- | -
Mo * My \
sone i .
=) v T([ﬁg‘%])
AN {

Suppose we are given an arbitrary N, and we set about o maximize T{N}

e —

by adjusting the frequencies in Ny and Nl3° The row sums are fixed

(by My, which is in Ny). Recall that B, the submatrix of R* corresponding

ot

to Ni2’ has an ascending diagonal of 1's; hence, the row totals for

(™ Ny2) can be assigned to the diagcenal positions in Ny,. That
12> Y13 12

assignment maximizes T(N) without assigning any frequensy to Nygo If

e

{§%)

)

Nig is not needed for anm arbitrary E&’ it is znot nesded for the ﬁi
which maximizes T(N), i.e., there is an N which maximizes T(N) and for
which Ni§ =0,

The last conclusion is the heart of the proof, for maximizing

T(N) when N is

_ [ | -
-——-——' ————— |————

N = Ny 1 2 <
N D S

o g

o2 8
- \ i B

is easily accomplished by setting
1if 243 is cm the ascending diagonal,
n,. = ice., if i + j =1 + k(R),

0 otherwise,

yielding T(N) = log k(R}.

Q. E. D.
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3.4,2. An attempt to generalize the theorem

Let R be a system relation on S =<{ Xl’ X2, eoo Xi’ 000y XM} .
Then R contains a largest subset M such that (i) for every X; in S,
the projection mapping pr; maps M one-to-one onto a subset of X,, and
(ii) no other mapping satisfies (i) and has more elements than wm.
Letting k(R) denote the number of elements in Js it is tempting to
conjecture, as an M-dimensional generalization of the above theorem,
that for any N(S) compatible with R,

T(N) < (M-1) log k(R).
However, the generalization does. not always hold for M >2. For
example with R = S =~{x, Y, z}- the following N(X, Y, Z) has T(N) = 3,

but (M-1) log k(R) = 2 log 2 = 2.

X X
12 3 & 1 2 3 b4
1]00 00 10 001
Yy 2|0 0 0 0 Y 2|00 10
3 /010 ¢ 30 2 00
4|1 0 0 0 b lo o o o
zZ=1 7 =2

After introducing some new notations to deal with dynamic
variables, we will apply the results of this section to the problem of

finding the channel capacity for networks of automata.
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3.5. Information guantities for dynamic variables

Introduction

We normally think of a dynamic variable, e.g., X{t), as one
which changes in time. A semanticAand notational confusion results
when we wish to consider both (1) the variable X(t,), i.e., the
variable whose values are the possible values of X at the specific
time ty (but with t, arbitrary), and (2) the variable X(t), i.e., the
variable whose values are the possible trajectories X can take over an
extended time interval. To distinguish the instantaneous - from the
trajec¢tory~variables, we call the first simply a variable and the
second a super-variable. The two are of course related, and in this
section we will explore that relation as regards the information
quantities involved.

In later sections on channel capacity, information transfer,

and regulation we shall rely heavily on the concepts of this chapter.

3.5.1. Definitions for limit-quantities

It frequently happens that a system S = { Xl’ X2, ....} is
composed of variables all having the same statistical distribution, or
is composed of groups of variables, all within each group having the
same distribution. A stationary regular Markov sequence

U e i T

where the superscripts denote successive instants in time, and the

states in a chain of identical MWI'S,

660 — Xi-l \ Xi 2y, Xi"*’lT—, 00 0

=) T T/




where the subscripts denote successive positions in the chain, are
one-dimensional examples. For such a system, certain limit-expressions
are meaningful and have profound interpretations in the study of com-
plex systems. We will denote these limit-expressions with a superscript
L. At the start, a word about notation is in order. We will use
subscripts in this section and elsewhere to distinguish variables or
super-variables which are being thought of as different in nature; we
will use superscripts, on the other hand, as indices for time. For
example, X; and X, might be a set of temperature-values and a set of

humidity-values respectively; the variable "temperature at time <"

T

would be denoted X, and the variable "humidity at time 7" would be
denoted XZ,

To simplify notation, we define the super-variable X or the

s-variable X as follows:

X = <X, X2, vou, X5, ... >
X corresponds to an indefinitely long strip of a protocol,

time: 1 2 3 i 5 cao i eae

X : x* X2 x3 ol b <2 x1 ?

and one value of X is one possible way to fill in the protocol. Of
T R - x
course X~ may have components, say if X = <U , V >; then
X = <U,V> is a supervariable with components,
We define a super-system S as an crdered set of super-variables:
S = i’xl, XE’ cooy XM‘}

It is important to distinguish S = {.X;, i%J}, a supersystem of
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supervariables, from,~<Xl, X2>>, a supervariable with compocents,

The latter corresponds to a protocol of two strips,

1 2 3 L 5
Xy Xy X{ Xy Xy

1 2 : L 5
RN }

whereas the former corresponds to a set of protocols:

1 1 1 1 2 2

1
ol 2| B | %, o | 8|

Thus the prefix super- or s- and the coverbar imply variables which are
really infinite vector-variables. We will use the term "variable",
henceforth, to include both ordinary- and super-variables, using the
prefix only when a super-variable is expressly implied; likewise the
term "system" will include both types, so that a super-system is also
a system.

We denote the limit-entropy of X or L-entropy of X by HL(fj

and define it by
= lim 1 1 n
() =0 L oEE, 8, L, 6
if the limit exists. The n-th term in the sequence is what Sha.nnon5
calls GN“ Similarly, the limit-entropy of & super-system

§ = &il’ }_('2, 0o iM} is defined as

H5) = o L g (<xl X x>,

n»>® n 12 fps v

RSTR A ~E NI IE S D

lim 2

n-»>w

B

H(<s'> , <s®>, ooy <8P ).

The notation is slightly redundant in that L-entropies are

defined only for s-variables, but this redundancy will be kept, for



emphasis. Continuing the definitions in their general version, we

define the L-entropy of §; conditional on 55 by

- o o o T, o=
ngb(sa) -1, U §,) - mGE,)-
And so on. The definitions for all simple limit expressions, except
for HY(X) and HY(S) which are primary expressions, are obtained from
the analogous non-limit definitions by superscripting with L, and

.

overlining all variables. For example, the I-transmission over S =

{i’l, 3('2, YM} is defined by

1U(E) = HE(ER)) + HEE) + ...+ H(Ry) - H(Ky 5,000 T00)-

By a simple limit-expression we will mean a single L~entropy,

L-transmission, or L-interaction term explicitly involving s-variables,
€. HL(f), T%(ﬁi?)b A limit-expression is a sum of simple limit-

expressions.

3.5.2, The relation between non-limit identities and limit-identities

One of the post powerful thecrems in information theory is the
one which states that an identity in simple expressions remains an
identity if the same subscript is added to each simple expression9.

The reader might be tempted to suppose that an identity in
simple non-limit expressions remains an identity if each term is
superscripted with L and all variables are overlined. Since the
definitions for all L-transmissions and L-.iateractions are related to

the non-limit definitions by precisely that operation, the supposition
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is clearly true for identities not involving entropies. If entropies
are involved, however, the supposition is by no mears obviously true,
for a limit-identity has on its two sides the limits of two distianct
sequences, and to establish the identity these limits must be shown
to be equal.

Theorem III.6

An identity in simple expressions remains an identity if
superscript L is added to each simple expression in it and every
variable is overlined. That is, every non-limit identity implies
a corresponding limit-identity.

Proof':
Let £ = g be an identity in non-limit expressicns, involving

variables Xl, X2, sony XM:

f(Xl, X2, aoey XM>E g(Xl, X2, coog XM)o

Substituting <Xy, X5, ..., Xo> for X;, <Xb, ..., X > for X,, etc.,

and <X§, Xﬁ, cooy Xﬁ > for XM’ another identity is obtained:

1 1 n
f(<Xll,ooo,XI:E>,°°°’ <X14,ooo,xﬁ>> = g(<xlﬁooogxl>30009

1 143
<xr4’oeo,'%4 >) o
The identity is preserved if both sides are divided by n; therefore,

for all n = 1 we have

1 1 1 n 1 1 n
_ﬁ f(<Xl,OQO,X§>’QOO’<%’0009X14>)EE’ g(<xl,ooo,xl>’ooo,

, —— - Lz o =
Our goal is to show that fL(XlsXQ,ooa,xM) and g (Xl,XQE,OQQXM) are

identically equal; each of these limit-expressions represents the limit
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of a sequence, and to show them equal we must show that the two sequences
converge to the same limit. That they do follows from the fact that the
two sequences are equal in every term, and that is the case since in
the last identity above, the expression on the left is just the n-th
term in the sequence whose limit is fL(Yl, Xys ---s Ky) while the
expression on the right is the n-th term in the sequence whose limit
is (X, X, voes Xpy)o
Q. E. D.

Deeper exploration of limit-expressions and their profound
importance for complex systems will be deferred to a later section;
here it will suffice to state that HI‘(i') is the information (per step)
carried in the sequence {X} and TL(i : Y) is a measure of the linkage
between the sequences {X} and {Y}, per step. When X is the input
and Y is the output of an information channel, TL(i : Y) is the
amount of information usually thought of as "transferred through"
the channel, and it is bounded by the channel capacity. We will

take up the subject of channel capacity in the following section.

3.6. Channel capacity, constraint capacity, and the capacity of

automata

Introduction

The notion of channel capacity is one of the most fundamental
in information theory. It applies, classically, to an "input-output”

system and is the limit on how much information can be pushed through




it per unit time. We will show here that the notion need not be
restricted to "input-output" systems nor to systems with only two
"terminals;" the generalized notion will be referred to as constraint
capacity, to eliminate the connotation of unidirectional flow that
the word "channel" carries. Constraint capacity will reappear in a

later chapter, when we discuss the decomposition of constraints in a

o

dynamic system, as an upper bound for the linkage between two or
several dynamic variables in a dynamic system.

In later chapters on regulatiocn in dynamic systems, it will
become apparent that the channel capacity of a regulator is or
fundamental importance for its capacity as a regulator. Since a
regulator is not always describable as either a machine with input
or a mapper alone but can usually be described as an automaton, the
calculation of the capacity of automata is of prime interest to this
study, and & method is presented in this chapter by which that calcu-
lation can be made. The method allows calculaticn of the capacity

for any network of interconnected automata, in fact, and it produces

as a by-product the information necessary to construct a source matched

to the network so as to realize the maximum information flow.

3.6.1. Channel capacity and constraint capacity

s

We consider a super-system S = f}?j in which X is the input

s-variable for a channel and Y is the output s-variable:

Y
|

X Channel
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A pa.rticulaz" value of X = < Xl, X2, ...> 1is a particular sequence
of input symbols to the channel, Xi being the input symbol at time i.
The channel specification is in fact specification of a relation R in
the product set X x -f, and the channel capacity is defined by

C = max { TL(f: Y)}
where the maximum (or least upper bound, if there is no maximum) is
over the various distributions N(X, Y) compatible with R.

For many channels of practical interest, the order of maximiza-

tion and limit-taking may be inverted, giving

¢c = ¥m 1 [max (<X, X2, ..., BricYh, Y2, L Y >) ]
no>w n

The maximization is that considered in section 3.4, namely maximizing
transmission under constraint by a relation.

The relation specified by a deterministic input-output channel
is normally a mapping from X (and perhaps the channel's initial state)
into Y; for such a channel, H%(T) = 0 and therefore

C = max {.HL(?).} .

The characterization of the channel as "input-output" derives
from the relation R, not from X or Y. By considering arbitrary relations
on arbitrarily many super-variables, we can generalize C to the notion
of "constraint capacity" of an object. Supposing there is a super-

system S = {il’ fg, ceey EM} , and the object specifies a relation R;

RCilXiax'.pxxM,
the constraint capacity of the object is denoted C and defined by
C = max { TL(§)}

with the maximum (or 1. u. b.) taken over all the possible distributions

N(S) compatible with R.
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It may strike the reader as presumptous to speak of a relaticn

in a set of infinite size. 1In practice, of ccurse, R is usually a
highly iterated version of a very simple relation on a finite set.
For example, if X and Y are the input and state supervariables for a
MWI with mapping f : Xi b4 Yi - Yiﬂ', then

<X, H>is in R & for every i = 1, <X-, v, ¥ s in f,
where f is viewed as a relation in (XT x Yi) x Y**1. R is thus shown
to be an expanded version of the three-variable relation f.

The treatment thus far has not differentiated between "noisy"

and "noiseless" channels. That topic will be taken up in section 3.6.k.

3.6.2, An example of constraint capacity

As an example of constraint capacity in more than two dimensions
(variables), we define a relation R on § = {5(-, Y, Z} s where each of
the s-variables takes, at each step, one of the values 1, 2, or 3:

<-X-, Y, Z>e€eR & forevery i =z 1, Xi, Yi, and Z'1

all take different values, and
Y > 21 if i is even, Y < 2zl ir 1
is odd.
This is equivalent to
<f, ?, 7Z>e R&e if i is even, <Xi, Yi, Zi> is
<2, 3, 1>, <3, 2, 1>, or<l, 3, 2 >}
if i is odd, <X, ¥i, zl> is
<3,1,2>, <1, 2, 3>, or <2, 1, 3>,
i

The distribution N(X*, ¥, Z), with

n, =n = 13 olhers zero

33291 133’2
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when i is even, and

n3’l,2 = nl,2,3 = 1; others zero
when i is odd, maximizes both T(Xi : Yi) and T(<:Xi, > Zi); there-
fore it maximizes T(Xi R Zi), at 2 bits. The extension of that
distribution maximizes TU(X : ¥ : Z ) at 2 bits/unit time, so the
constraint capacity associated with R is 2 bits/unit time. The relation

represents a real constraint, since with no constraint (R = S), the

constraint capacity would be log 9 = 3.17 bits/unit time.

3.6.3. Channel capacity of Moore automata

3.6.3.1. The theorem

Viewing the object (the "channel") as a set relation has led to
the solution of an outstanding problem - that of finding the channel
capacity of an arbitrarily connected network of MWI's, mappers, and
Moore automata.

Consider a finite network of arbitrarily interconnected Moore
automata, as in Figure 10 where the circles represent automata and an
arrow from one circle to another indicates that the output symbols
from the first automaton are input symbols to the second. Further
suppose that the network acts as a communication channel from a Source
to a Receiver, the "input automaton" accepting only Source symbols as
input and the Receiver observing the output symbols of the "output
automaton” only. This section will provide a procedure for evaluation
of the channel capacity of such & network and of its component automata.

There is no loss of generality in assuming that only one

automaton accepts inputs from outside of the network, that there is




Source

Network N

Receiver

Figure 10.
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only one Source, that the input automaton accepts only Source symbols
as input, or that the Receiver observes only one automaton; all other
cases may be reduced to this one by nominally combining elements,
recoding the descriptions of elements, or introducing one "delay
automaton.”" None of these modifications affects the channel capacity
of the network.

The network itself may be viewed as a Moore automaton, of course,
so that the problem of finding the capacity of a network reduces to
that of finding the capacity of a single automaton. On the other hand,
each arrow in Figure lb can be thought of as a unidirectional channel
and may be labeled with its channel capacity, which is the capacity of
the automaton from which the arrow emanates. One upper bound for the
network capacitylo is the minimum value among all simple cut sets,
where the cut sets separate the "inéut automaton” from the Receiver and
where the value of a cut set is the sum of the capacities of branches
in the set (but only counting branches directed from the input toward
the receiver). Thus the calculation of this upper bound for network
capacity also requires the calculation of capacities of single automata,
to which we now turn. The method, in essence, is an application of
theorem III.5, setting the input and output séquences in biunique
correspondence.

We consider a Moore automatcn A with a finite input alphabet
ﬁ.xl’ X5y eoey Xk'} = X, a finite state set {sl, S0y eees sm-§ =85, a
finite output set {yl, Yos ooy yn} = Y, a state function f: X x S > S,

and an output function g: S —»Y. See Figure 11.




i
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Y

~<|

69



70

The state-transition matrix A = ['A. ] for A is defined by
ij 4m,m :

" 1 if dx ¢ X s.t. f(x, si)=sj

1 0 otherwise

and the related matrices Ap = [7\. ] 1l < < n, b
J\p l'jp m,m, P s Oy

A,.ifgls;) =¥

P 0 otherwise
Row s of A indicates with a 1 every state-transition 8§ > 83 allowed
by f, and AB’ 1 € p < n, copies those rows of A representing states

which g maps to yp.

For a discrete channel such as A,

. lim 1 .
¢ = Tow T [ma‘x T(<Xl’ xea ceoy XT>'<Y1’ Y2, cony YT>)]°

There is at least one sequence {Xl, Xos oooy XT} for each sequence

{1, ¥, ..o, Yp}, and from Theorem IIL.5 it follows that

c. o lm log N (T)
y Tro ’_'_—Tx"_‘"
where N&(T) is the number of output-sequences of length T allowed by
the input and the set relation prescribed by A. Shannon gives the
expression above as the definition of C for a discrete channel5°
We denote by NS(T) the number of state-sequences of length T;

Ng(T) and NY(T) yield capacities Cg and Cy respectively. Cy is the
capacity of A.

Cs may be calculated from A by a method due to Shannonj; he
5

shows” that if A represents the allowed state-transitions, I the
identity matrix, and W, the largest real root of the determinantal

equation
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det [ cﬁL -

then Cg is given by

=
e

]

O

CS = lOgEW °

If g is a one~to~one mapping, each state-sequence yields exactly
one output-sequence; in such a case Ng(T) equals Ny(T) for all T,
Cs = Cy, and the capacity of A may be calculated directly from A. If
g is not one-to-one the convergence introduced by g will force Ny(T)
to be smaller than NS(T)o To find Cy in such a case we systemmatically
substitute new automata A', A", etc., with their relations R', R", etc.
inXxY being each a proper subset of its predecessor, until an

automaton A¥ is found for which

lim 1 . _ lim 1
Tow T L1O8 Nox(T) = Taw T 108 Ny(T)c
That is, Cox = Cyo

The sequence of automata A, A", A", ..., A¥ can be formed in such a way
that the state-transitions become increasingly constrained while the
output-transitions do not, so that Cy may be found from the state-
transition matrix for A¥, which we will call A*.

We define a parallel set P as a set containing two or more

state-subsequences of the form

{si, Ser Sgs eees Si-’mk (n > 2)
all compatible with A, all idemtical in first and last states, and
all of which are mapped by g into the same output-subsequence.

If a parallel set P exists, an observer seeing only the corres-

ponding output-subsequence is unable to determine which state-subsequence



T2

in P has caused it, but the observer's uncertainty can be minimized

as follows. Given A, one can generate all the state-sequences of
length T allowed by A. If a .parallel set P is found, the constraints
on state-transitions can be increased, eliminating members of P until
exactly one sequence in P remains allowed; this is always possible, and
it amounts to the substitution of a new automaton A' capable of the
same number of output sequences as A but a smaller number of state-
sequences. One can next generate all the state-sequences of length T
allowed for A', and so on. Reiteraticn of this process will eliminate
all parallel sets of length T and will lead to a collection of no more
than m?N&(T) state-sequences, since for each first-state, last-state pair
(of which there are at most m?) an observer of the output-sequence (of
which there are Ny(T»‘would correctly assign one state-sequence. More-
over, the collection will contain no fewer than Ny(T) sequences, since
the elimination process always leaves, for each allowed output-sequence
of A, one state-sequence capable of generating it. This process, then

provides a sequence of numbers, NO(T), which give a capacity Cg:

= ldm 1
Co = pyp T 18 No(T).

From the inequality

2
Ny(T) < Ny(T) s m NY(T) for all T = 1

it follows that Cy = Co- Since C, may be found from A* by Shannon's

method, the foregoing Justifies the following theorem:

Theorem III.7

Let W, be the largest real root of the determinantal

equation det [ Ax - W ] = 0. Then the capacity of A is

log WO o




1&% embodies the original state-transition ccnstraints and the ones
introduced by the elimination procedure, at the point where no further
elimination is necessary.

This calls for several comments., First, unless the transition
eliminated is a first-order one {e.g., 57 = s5) the states must be
recoded and the transition matrix redrawn before the elimination can be
made. For example, elimination of a third-order transition (e.g.,
<Sp, 8}, 81> 4>s5) requires that the states be recoded into triples
(e.g., (sp, s, 57) = soly) and that the correspording matrix be con-
structed before elimination of the transition (e.g., Sol *’Shl5)°
Corresponding changes in the domain and range of g must be made. The
effect of this relabeling is to increase the size of the matrix at each
step unless certain simplifications are possible; in the Example, some
common simplifications will be illustrated.

Second, if at the Mth iteration of the process the matrix, call
it :ﬁiﬂl, has become too large to make continuation feasible, an
approximation to Cobcan be obtaired by using Jﬁigllin place of A¥;

such an approximation, Cy, satisfies the inequalities
C. gC,  s¢C, . < Cq (M = 1).

Finally, there exists a procedure, given below, for deciding
whether or not further eliminstions are necessary, i.e., whether or not
AQD = A%,

We proceed next to outline the process in terms of matrix

operations.

13



3.6.3.2. Calculation of capacity

Sets X, S, and Y and functions f and g are presumed given. As
the iterations proceed to substitute new autometa for the original,

S, Y, f, and g will change accordingly. To simplify the notation we
will assume, however, that S has m elements and Y has n (m >1, n > 1)
at the start of each iteration, signaled by a pass through Step 1, and
we will call the transition matrix A throughout.

Preliminary

If S can be partitioned into disjoint subsets such that no
state in any subset has any transition to any state in another subset,
then A is a merely nominal conjunction of smaller automata, one of
which is selected by choice of the initial state. The capacity of A is
then the largest of the capacities for the smaller automata.

Transient states, which cannot be reached from any other state,
as well as persistent states, which cannot lead to any state other than
themselves, may be dropped from S without affecting the capacity. If
S is empty after all such states have been dropped, the automaton has
a capacity of zero.

Construct :ﬁ,and :ﬁﬁﬁ 1l < p <n as previously defined.

Step 1.

Observe the :XR.matrices to see if there exists any column of
any jﬁR containing more than a single 1. If so, proceed to Step 2. If
not, no further eliminations are necessary, as the comments for Step 2

will explain; proceed to Step 5.

Th




-~
\J1

Comment on Step 2

The successive postmultiplications of a row vectcr Ej {with
e;j equal to 1 and the other elements all zero) by A, Ape, /\p3,

ooy /\pT corresponds to the constructicn of state-sequences starting

with s; and passing through states in the sets g_l (ypz}, gml(yp3),

0oy g-l (ypT)° For Ejl\ indicates by its nonzero components the set of

states reached in one step from s EﬁAA‘Ap2 indicates those states

j?

reached in two steps from Sj via some s in g’l(yp }, and so on. If a
2

vector component equal to KX > 1 results from the multiplication, there
must exist a related parallel set containing K segquences. Conversely, if
a parallel set never occurs, it must be the case that no vectors ever
arise from the multiplications which, when multiplied by any llR’ yield

a vector component greater than 1. Clearly, if no column of 112

contains more than a single 1, multiplication of a vector of zeroes and
ones by 112 can give rise only to components of zero and one.

Step 2.

Define Ty, a set of row vectors, as follows:

T-L ={Xl, X"E‘: cooy Vm} wherelli= [All, Kie, ooy Xim]o

s

Start the following substeps with N = 1,

Step 2a.

. = T o
Generate the set of vectors eQ;N.n iVi/\ ‘ l<psxgn, Zi., € N}

For N = 1, these vectors are simply the rows of the matrices

AA]_’ A/\2,’ °00oy /\An"




If any vector in QN has a component greater than 1, go to Step 3. If

none has, go to Step 2b.

Step 2b.
Form the set Ty, = TN'U Qqe If Tyyp = Ty» 80 to Step 5. If

TN+12# Ty» increase N by 1 and return to Step 2a.

Comment ‘on Step 3

Entry to Step 3 results from the production of at least one
vector in Qy containing, in say its Jth column, a number K greater than
1. The vector, produced on the Nth pass through Step 2a, corresponds to
the existence of a parallel set P containing K distinet state-sequences,

each of length N + 2 and each ending with s All but one of the

je
sequences in P must be eliminated. To every component greater than 1,
of every vector in Qy, there corresponds such a parallel set requiring
eliminations.
Step 3.

Find the parallel sets by retracing the steps of multiplication
which led to the vectors in question and by consulting the function g.
Once the sets are known, all but one member in each set must be declared
examples of illegitimate transitions (of order N + 1). Rewrite the
transition matrix to show the previously allowed transitions of order
N + 1 and modify it (by substituting zerces for the ones corresponding
to the newly illegal transitions) to form the state-transition matrix A

for Step 4. S, Y, £, and g must be modified to reflect the relabeling

of states described earlier.
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Step k4.

Remove transient, persistent, and i:zolated states from S as
follows. If there exists a state sx in € such that row Sy or column sy
in JL contains only zeroes, except perhaps on the main diagcnal, remove
gx from S and revise A accordingly. Continue removing states and
revising ll,until every row and column cortains at least one off-diag-
onal 1.

From the resulting A and g, construct the llR’matrices and
return to Step 1.

Comment on Step 5

Entry to Step 5 indicates that the state-transitions, as
represented by the current l&, are sufficiently constrained as to
guarantee that

N(T) s Ny(T) < w°N(T)

for all T. Thus the current A is A*.

SteE Se

Solve the equation
get [ Ax-wr ] =o
for its largest real root W, calculate C = log,W, = capacity of A.
The state~transition probabilities which maximize the output
entropy at C bits per second are given by
Prob (s(t + 1) = sj| s(t) =s5) = Pyj = g%:° Ziil
in which B is the eigenvector associated with the eigenvalue W, in the

equation

[.L’L*-Wl] B = 0.
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This result is from Shannons, and it leads easily to the construction

of a source which is optimal for the channel.

3.6.3.3. An example

This exemple will illustrate how the process typically proceeds
and what simplifications are often possible. Let A be an automaton
described by sets X = ixl, X5 s x3} y S = {sl, 855 s3, S)s s5, 56} s

Y = iyl, Yo y3} and functions f and g given in Table I.

Next - state function Output function

f Xy X, x3 g

sy S5 83 Sg s1 Yy
So 53 S5 S3 So Yo
83 Sy So S3 3 Yo
S So S3 S1 sy, 1
s | S5 | S5 | ®s %5 Y3
¢ Sy 8), S), ¢ V3

TABLE I.. State and output functions of A .

Preliminary. State sg cannot be entered from any seS, so it can be
dropped; with s¢g gone, sy cannot be entered, so it can be
dropped. State s5 cannot be abandoned once entered, so it can
be dropped; note that this means that the couple (sl, x3) must

never be allowed to arise. With § = { S15 Sp» s3‘k we can

proceed.




O

-
(-
[
[
[
O
(@)
O

|>
I
o
|—l
'_J
>
H
i
O
o
o
>
1
o
'—l
H

‘—'

]
=
O
o
o
]
j—t
-

Step 1. /\2 contains columns with more than one 1.

Step 2. T ={Vl, V., V31 with Vl =-"V,r2 I—O 1 l] and V, = Tl 1 l]o
— © 4 3 L ~

1 L2 3 <L 2
[0 1 1] [0 1 1] [0 0 0]
2a. AAj= |01 1| x 000 =]0 oo
|11 1 0 0 0] [0 1 1]
(0 1 1] (0 o 0| (1 2 2]
AN, = |0 1 1 x o 1 1] = 1 2 2
11 1] (11 1] 1 2 2]

The rows of AAl and /\/\2 are the vectors in Qlo

Step 3. To each 2 in the matrix product there corresponds a parallel
set containing two sequences, and if the 2 is in the (i, j)
position of AA_, the sequences must start with sy, pass through

an s in g"l(yp), and end with sj, since

[row i of /\Ap—l =E A AE°

The parallel sets, subscripted with i and j, are as follows:
Pip = {(51’32952)’ (31’33’52)}
Pl3 = {(31,52,33), (sl,s3,s3)}
Pop = {(se,sa,sg), (32,33,52)}
3 = {(32,52,53), (52,53,33)}

{(33952352)3 (53983982) }

P33 = {£53952353>3 (53353353) }.

Y
|

o
]
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The second order transition matrix, after relabeling states
as indicated on page 73 of the text, is given in tabular

form below.

s(t +1)
831 S12 Sp2 S3p 813 Sp3 833
831 0 1 0 0 1 0 0
515 0 0 1 0 0 1 0
S50 0 0 1 0 0 1 0
s(t) S35 0 0 1 0 0 1 0
513 1 0 0 1 0 0 1
Sp9 1 0 0 1 0 0 1
S35 1 0 0 1 0 0 1

The elimination of a sequence from a parallel set P is accom-
plished by substituting a zero for the corresponding 1 in this
matrix. The sequence in P to be eliminated may be selected
arbitrarily, although a good choice will minimize the subsequent
computations. We choose in this Example to eliminate the

following sequences:
$158358p5 87,535535 S,53,8p
s2,s2,53; s3,s3,52; s3,s2,s3
(this is in fact not the best choice). The result is given

below.




Step 4.

s{t + 1)
831 S12 Spp S3p §y3 Sy Sgg
sy | O 1 0 0 1 0 o
S1o 0 0 1 0 0 1 0
Spo 0 ¢ 1 ) 0 9 0
s{t) S35 0 0 1 0 0 o} 0
513 1 0 ) 0 o o 0
5o 1 0 0 o 0 0 1
235 1 0 0 0 0 o 1

S = i_831’512’522’532’513’s239533.§°

Observation of column S3p and row Sp» indicates that, 832 and
Spp can be eliminated from S. Frequently the second-order
transition matrix at this point is merely an expanded version
of a first-order matrix, allowing a further simplification,
but in this Example that is not the case, Table II gives

the matrix, in tabular form, resulting from the foregoing
eliminations and also redefines the output function g on the

relabeled states.



State s(t +1) Output function
Transitions s3] S12  S13  Sp3  §33 g
sy | © 1 1 o0 0 S31 | Y1
s, | 0 0o o 1 0 515 | Y1
s(t) S13 1 0 0 0 0 813 | Y12
s, | 10 0 o0 1 So | Yas
333 1l 0 0 0 1 333 Yoo

TABLE II. State transitions and output functions after simplification

S = {331,312,313,523,533} .

—

- - -
01100 0 00 0O
0 0010 0 0010
A= | 0o000fA, ,=]120000
1 0001 0 0 000
10001 0 0 000

- - -
0110 0] 0 0 00O
0 00 0O 0 0000
A= [00000]A,=100000
0 00 00O 1 00 001
O 00 00 1 00 01




2b.

28,

2b.

83

With these matrices we return tc Step 1.

/\/\22 contains columns with more than one 1.

Tl=iV1_, Vas V3, Vi, Yz}with vp=fo 110 0],

v, = [0001o]v

={lOOOl]°

AN, =

AN,,

1

e

0

1

1

[10000] and

—d

The rows of these matrices are the vectors in Q,

Q = {Vl, Vh’ V6, V7} with Vl and Vu as above and with
vg=[1 00 1 0] =foo0oo0o0o0].
T, =7, U Q {1’V2’V’Vu’ ) Ve, ¥ }#T

%= { W Y ] -
=T,U q,

H
]



Step 5. The equation det [ A -WI ] =0,

-W 1 1 0 0

1 0 -W 0 0 = 0
1 0 0 -W 1
1l 0 0] 0 1-W

has W, = 1.618 as its largest real solution.
C = log 1.618 = 0.693 bits/unit time.
The eigenvector B is easily calculated to be

[0.618
0.618
B = |o0.38

1.000

1.000 |

The second-order state transition probabilities are given
below.

s(t + 1)
Pij
S31  S12 S13 f23 %33

s37 {0.000 0.618 0.382 0.000 0.000
s1p | 0.000 0.000 0.000 1,000 0.000
s(t) s;3]1.000 0.000 0.000 0.000 0.000

sp3 | 0.382 0.000 0.000 0.000 0.618

s33 0.382 0.000 0.000 0.000 0.618

8L




A source to realize these transiticn prcbabilities can be
constructed by enabling it to follow the states of A {returning
to the original single-subscript notation, in which the set

of states is § = {.sls So s 33} J, and to emit symbols as

follows.

If preceeding state and Source emits Xy Xp,y X
Present state of A are with these prcbabilities:

_ s(t - 1) s(t) x, %, xg
s s 0.618 0,382 0.000

3 1
N

Sy S5 1.000 C.000 0.000
51 53 1.000 0.000 0.000
s, 83 0.382 0.000 0.618
s3 33 0.382 0.0C0 0.618

With this source, the output sequence is a Markov process

and the transition probabilities are as follows:

y(t +1)
Y1 Yo
y; | 0.000 1.000
y(t)
y, | 0.382 0.618

The entropy of the sequence is 0.693 bits/unit time.
Before leaving the subject of automata capacity, we will make
one final observation which has been deferred to avoid confusing the

reader. This is that when A * has been found, one need not solve the



for its largest real root but may solve instead the simpler equation
det [g(_/_\_*) - w;] =0

for its largest real root; the two roots will be the same. In the

second equation, g(!&?) is the matrix of allowable output transitions,

and it may be deduced directly from A* and g. For the example, this

is illustrated graphically in Figure 12. Arrows indicate allowed

transitions in A*, above, and in g(A *), below. The output transition

matrix in tabular form is:

y(t""l’ t )
Yor Y1z Yoo
Yop | O 1 0
y(t-2,t-1)  ¥o 1 Y 1
Yoo 1 0 1

The determinantal equation det [g(_/_\_*) - WL]= 0,

-W 1 0
1 -W 1 =0,
1 0 1-W

has Wy = 1.618 as its largest real solution, and log Wo = 0.693 as
before.

The reason this simplification is possible is that when the
output sequence carries just as much information as the state sequence,
one gains nothing by maintaining the distinction between states which
map to the same output; the exact state sequence could be deduced from
the output sequence if needed. Therefore we can deal with a homo-
morphism of the automaton A%, and using g(A_ *) amounts to doing Jjust

that.




State Transitions

————

Output  Trarsitions

Y21 le

1y

g —

Figure 12,
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3.6.3.4, Further remarks

This section has provided a means of calculating, or at least
approximating, the capacity of any arbitrarily complex (but finite)
network of MWI's, mappers, and Moore automata. Since a great many
mechanisms can be approximately modeled by networks of this type, we can
now calculate the capacities of many systems. In the chapter on regu-
lation we will show that the power of a regulatory system to regulate
is limited by its channel capacity; consequently this section is of

substantial importance to the theory of regulation.

3.6.4. Capacity of noisy channels

A Moore automaton is an example of a deterministic channel - a
channel for which H%(Y) = 0, A nondeterministic channel mayvbe viewed

as a deterministic channel with an unknown input, W, so that

L - =
H <ﬁ,3‘(‘>(Y) = 0 although H%(Y) > 0,

W
1

Deterministic

T
l.

Channel

" and W as "noise

If we think of X as "message input," Y as "output,
input," and the channel as a relation R between the three s-variables,
this adequately characterizes the situation of the noisy channel.

HL(?) is the information rate for the output sequence. The
identity

H(T) = 1R : T) + H(T)




89

shows that the information rate at the chancel output is the sum of
the rate at which information is passed from message input to output
and the rate at which the noise contributes to the output, since the
last term,

Hp(¥) = Tg(i : T)
is the rate at which the noise "corrupts" the output in spite of the
message.

The last term is zero for noiseless channels. If the contri-
bution of noise is regarded as a nuisance, so that TL(i': Y) is the

rate of "useful" information, then the channel capacity for useful

information is

L= =
= 4
Cocory = MBX { (X : *jk

with the maximum taken over the distributions gﬁigx,§) compatible
with both R and the assumed characteristics of the noise source.

What one regards as message and what as noise is arbitrary; W
and i'play symmetric roles, and the equation

H(T) = X - ¥) + TV(W : T) + Q%W %,Y)
shows this clearly. If TL(ﬁ': f) =0, i.e., the noise is independent

of the message, then
H(T) = T°X : T) + (7 : T) + T : )
HY(Y) 3 TM(E : T) + ™MW : 1)
and the output information rate is at least the sum of the message-to-

output rate and the noise-to-output rate.
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IV. INFORMATION THEORY AND COMPLEX SYSTEMS

Introduction

In this chapter we will focus attention on information theory
as it applies to complex systems. After a brief consideration of what
is meant by complexity, we will consider several information theoretic
tools for dealing with complexity in systems and will show how these
tools can lead to a better understanding of such systems, by discarding
excess information. The basic point of the chapter is that to under-
stand a complex system, one must discard much nonessential information,
and the methods and measures of information theory throw away a great

deal while preserving that related to the structure of the syétem°

4.1. Complex systems

4.,1.1. Measuring complexity

We will deal briefly in this section with some of the difficul-
ties which arise in attempts to measure the complexity of a system, and
we will propose two measures which, although not perfect, nevertheless
are consistent with many of our intuitions. No attempt will be made to
deal with "systems" in the vague, general sense of that word, but rather
only with systems as ordered sets of s-variables and as networks of
machines, probabilistic or not, embodying those variables. Moreover
we will consider only dynamic systems, in which the s-variables repre-

sent time sequences, and the focus will be on the complexity of the
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system’'s behavior rather than on the complexity of the system per se.

Complexity is a poorly-defined moﬁion‘in which ths subjective
component so predominates that it is probably impossible to produce a
definition, much less a measure, acceptable to all people in all
circumstances. Yet few would disagree that there is a strong link
between complexity and information; the mors information cne has *o
take in to "understand" the system, [i.e., its beravior), or to describe
it, the more complex it seems.

We speak of the complexity of a system as if it were a property
of the system, and that semantic wusage obscures the tast that complexity
is really a relation between the system and its observer, as is apparent
from the fact that the same "thing" (say a watch) may appear quite
complicated to one observer (a housewife) while not nearly as complicated
to another (a jeweler). When a "thing" appears less complex to one
observer than to another, the two may actually be considering different
systems (i,eo, different variables) or, if not, one cbserver may under-
stand the system better - have a more adejuate mental model of it, that
is, so that it appears more predictable and less mysterious.

One contention of this section is that it is to the observer's
"model" of the system, rather than to the system itself, that aay measure
of complexity should be applied. By his model we mean the ordered set
of variables comprising the system, together with his best current guess
as to the internal dynamics of the system - what system-values are most

likely, which variables are causally lirked to which others, what

functional relations obtain, and sc on - embodied iv his a priori

JE Pty



"probability" distribution P;, giving for each possible past history of

the system, the "probabilities" for the ensuing system-value
i i

= <Xj, X%, cees Xy

p; = By (st | stL, 12, L)

S

Dealing with the observer's model rather than with the system itself
serves to remove the problem of the observer, to some extent, by making
objective his knowledge (or ignorance, or intuition) about the system.
Having made clear that we will deal hereafter with models of systems
rather than with systems themselves, we can revert to use of the word
"system" as a convenient shorthand for "model of a system,” bearing
the distinction in mind.

An apparently reasonable axiom to adopt with respect to a
measure of complexity is the following:

If one system is a homomorphism of another, then the
complexity of the former should be less than the complexity of
the latter.

This appears to be well in line with our intuitions, for a homomorphism
of a system is usually thought of as a simplified (i.e., less complex)
version. If this axicm is accepted, then the following is a direct
consequence of it:

If two systems are isomorphic, their complexities should
be equal.

For if a pair of systems are bomomorphisms of each other, they are
isomorphic, i.e., relabeled versions cf each other. We feel that

if we understand one system, we understand arother isomorphic to it
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(indeed, this is a common teaching device), and tha% therefore the two
are equally complex. The axicm is guite strong in that it states trat
the two systems in Figures 13 and 14, which are isomorphic, are equally
complex. In some sense, the system of two parts seems more ccmplex thaxu

the other; yet our intuitions on this peiut are ceontradictery, for it is
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ught that a system which can be "broken down" into parts
is less complex than another, having the same number of states, which
cannot ~ at least that is a common attitude with respect to really
large systems.

The axiom rules out reductiocn ot complexity through mere
relabeling of states and allows us to view every system as a one-
variable system, through relabeling. This may seem to conflict with the
observation that relabeling a system sometimes does in fact make it
appear less complex, as when one notices that a system which is under
study is isomorphic with another system which one "unders*tands." This
is not necessafily a weakness of the axiom, but rather further support
for our insistencé on measuring complexity of one's mcdel of the system;
for what apparently happens when the isomorphism is ncticed is a
revision of the model, making the model for the one system match that
of the other.

Another axiom is the following:

If a system is composed of a number of independent parts,
the complexity of the whole system should be the sum of the
complexities of its parts.

If one is to be able to relate the complexitiess of the parts to that of



Figure 13.
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System B

fs T2 >Z

Figure 14,



the whole, this would seem to be the most natural relation at least

when the parts are independent. Yet it is open to the objection that if

the parts are "similar" or even isomorphic, even though independent,

then the whole is in some sense not much more complex than one of its

parts. To counter that objection would require bringing in some notion

of similarity or else scrappiﬁg the axiom; we will do neither, just

regarding the weakness which results as the unfortunate consequence of

trying to find a simple, relatively unsophisticated measure of complexity.
The entropy function is consistent with these axioms, and we

therefore propose two measures of complexity related to the distribution

Py (si|si-1,s8-2,...). We define static complexity Cg as the uncer-

tainty as to which system-value will occur at any instant, if the past
history is not known,

¢ =H(st
s (st)

and the dynamic complexity Cp as the same uncertainty, if the past

history is known,
¢y =H  gi-2 gi-1 (si).

Both Cg and Cp are obtained from Pi,'the observer's model at
time i, and therefore they change, in general, as the observer revises
his model. If the observer starts with a model admitting of complete
ignorance, then Cg and Cp start at log N, where N is the number of
possible system-values Si, and the complexities decrease thereafter,
although not necessarily monotonically, presumebly until the model

represents the objective system well.




The dyrnamic complexity T 1s zerc if the model is deterministics
this is consistent with the feeling that deterministic systems, althcugh
they may be complex {via CS)’ are not complex in their style of dynamic
progression.

These measures of complexity have much to recommend them,
although they have apparent weaknesses; the coulenticn of this section
is that the noticn of complexity is sufficiently vague that any measures
will be found wanting in some respects, but that Cg and Cp are good

measures at least for many purposes.

4,1,2. Relevance of information theory to the study of complex systems

We will mention in this section some common attributes of
complex systems and the relevance of information thecrestic methods to
their study.

Perhaps the most obvious feature of really complex systems is
that they are large - not physically, but in the number of system-
values possible; frequently there are many variables, interdependent
in a non-simple way, with each variable taking many values. As larger
and larger systems are considered, the point is soon reached beyond
which the human, or even the fastest computer, cannot practically ccpe
with the whole system in detail, and thé complexity must be "reduced”
by substituting a new system, related to the original system but simpler
than it. A way of doing this which is frequently possible is to view
the original system as composed of parts, each of manageable complexity

and all related in a not-too-complex maaner. Another is to deal with
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a homomorphism, or an approximate homomorphism, of the system, thus
giving up some detail. To use information theory is yet another way,
in which most details of the system are ignored and what remains is
essentially a picture of the "activity" of the variables and of the
statistical linkages and causal connecticns between them. These
linkages will be explored in later sections of this paper.

Another feature which complex systems often display is a
hierarchical structure - a structure in which tke whole consists of
interrelated subsystems, and in which the subsystems are themselves
hierarchical, down to the lowest level of elementary subsystem. By
the term hierarchical we mean to include, but not necessarily imply,
the case in which each subsystem has a "boss" in the system. The

ubiquity of hierarchical structures is discussed by Simonll. For the

view of a system as composed of parts to be a useful view, the parts
must interact with each other in a more or less global way - that is,
in a way which is not highly dependent on the internal details of the
parts. The interactions in a communications system, in which the parts
are represented by blocks and the whole as a "block diagram", is a
common example. In section 4.3 we will demonstrate that information
theory can be usefully applied to effect a conceptual breakdown of a
system into subsystems, and to measure the constraints holding between
fhe subsystems as well as within each subsystem.

Many complex systems can be viewed as goal-seeking; that is,
they act in an apparently purposive manner, interacting with their

environment so as to "get their way," i.e., 80 &8 to maintain certain
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essential variables within acceptable limits. If the envircnment
represents a real threat, so that the purpczive action requires actual
action on the part of the system, then information theory ig relevant
in several ways. First, there are certain quantitative statements
which can be made about the coordination required between the ernviron-
mernt and the system if the latter is to attain its geal; these will he
developed fully later, in the information theoretic analysis of
regulation. Second, if internal coordinaticn between parts of the
system is necessary to achieve the gcal, this cocrdination is also
subject to quantitative constraints, of the same nature. Third, the
system must usually take in informaticn about the environment with
which it interacts, if it is to achieve the requisite cocordination, and
the rate at which this information can be taken in is governed by the
well-developed laws of information transfer through charnels.

Complex systems commonly display another feature; their actions
are commonly conditioned by their past history. This feature, which we
can refer to loosely as memory, means that the past has a demonstrable
effect on the present, and this effect can be studied withk the tools of
information theory; coordination between variables displaced in time is
Jjust as amenable to information theoretic techniques as coordination
between simultaneously cbserved variables. Most ccomplex systems do not
have the property of ergodicity, and therefore many specialized theorems
of information theory do not apply; nevertheless, much can still be
said.

In short, information theory is useful in the study of ccmplex

systems when one is willing to sacrifice the minute details involved
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and to look instead at the variables and their interrelations. The next
section will discuss two devices for doing just that. These are the
Diagram of Immediate Effects, suggested by Ashby, and an information

theory analog to it, the Diagram of Immediate Transmissions.

4.2. The Diagram of Immediate Effects and some information

theory analogs

Introduction

The Diagram of Immediate Effects (DIE) described by Ashby in

Introduction to Cybernetics is a useful device for displaying the

cause-effect relations between parts of a system, and in particular for
displaying independence of parts, feedback relations between parts, and
so on. The price paid for its extreme simplicity, however, includes
the following drawbacks:

(1) The DIE measures the linkage between two parts of a system
with cnly two values - either the two parts are causally
linked, or are not.

(2) To construct the DIE, one must in general either know the
mappings joining them, or else be able to force the system
into every conceivable system state.

(3) The DIE is applicable only to state-determined systems.

The coarse-grained character of the DIE means that its quantitative
information about relations between parts of a system is insufficient

for many purposes, and the requirements listed under (2) and (3) are




impossible to meet in many cases of practical intersst, e.g. in comglex
biclogical systems.

The Diagram of Immediate Trarsmissicns (DIT) described in this
section minimizes these problems; it m=asures the causec-sffest lirkage

between parts to as fine a degres as desired, and it demands for its

construction only that the variables of the system be cbservable ag the

deterministic and nondeterministic systems.

One of the chief advantages of the Transmission measures over
the Effect measures is that the former are better suited tror networks in
which there are changing patterns of commurication, as in networks
displaying "learning", "adaptation", ard the like., This is because the
transmissions will in general charge duaring the history of the network,
whereas the "effect” measures will not, being derivatives of the system's
mapping whichk is assumed fixed. The "effect” measures deal with what
communication possitilities are inkerent in tre network, while the
"transmission” measures deal with what actually happens.

We have investigated the DIE, the DIT, and sesveral closely
related diagrams in detail and have reported the results elsewherelz;
here only the major results of that investigation will be given. The
next part of this sectiorn deals with <he DIF, the following deals with

the DIT, and the last part offers commerts cr the usefulrness ard

weaknesses of the diagrams.,

L.2,1 The Diagram of Immediate Effects {DIE

s ?

Thic zecticon defines +he NTE and cther related diagrams ax

introduces several thecrems about them. Alt:hough the DIE is cf in‘erest
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in its own right, it is included here primarily as an introduction to
the DIT of the next section.

The DIE is applicable to a state-determined system §'=={§1,ié,

e Xy

denote by X; the set of allowed values for the variables X%, Xi, oo

} in which each "part" fi represents a machine with input. We

comprising iﬁ, and we let the superscripts indicate time. The mapping
fi maps the state of the system, S, into the next state of part Xi;

fi : Xl X X2 X ooe X XM —> X

i
The mapping for the whole system is fr ;3 £ 8 > S,

We will find it convenient to use the projection mapping

pry S —> Xi which selects the i& component from a vector, or more

generally the mapping pry S = Sa which selects the ordered n-tuple
a

of components corresponding to variables in §;° We will also use

prs_sa: S —>» S—Sa, For example, with S = i Xl,x2,x3-§ and Sa = & Xl’Xé}
we have pr3(<2, 3, 5>) =5, prg (<2, 3, 5>) = <2, 5>,
a

Prs_sa(<2’ 3,5>) = 3.

We say X. has an immediate effect on X: if there is a pair of
1 J

system-values s, and s, for which prs_xi(sa) = prs_xi(sb) and pri(sa)#r
pry(sy), such that fj(sa) # fj(sb)5 that is, if there are two system-
values different only in their ii-components, which lead to different
fﬁ-values at the next step.

It is convenient to use an arrow, as in X —e-fj, as shorthand

for the phrase "has an immediate effect upon," and a canceled arrow, as

in ii 7@> fﬁ, for the contrary.
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We define the Matrix of Immediate Effects A = [ﬂij:anM as

follows:
1 ifrX, =->X,,
i J

otherwise.

a,, =
ij 0

The Diagram of Immediate Effects (DIE) is a pictorial representation of

A. It bas an open and a closed form. For example, with {?is?ésmé}=:§

and

i
i
s
o
-

1 0 1
i

the closed form is shown in Figure 15, and the open form, with arrow-
heads assumed but not drawn on the right end of each line, is shown in
Figure 16. The DIE is an excellent device for displaying certain cause-
effect relations between the variables in a system, giving as it does

an easily grasped overview of what parts affect which, what feedback
relations may be present, and so on. The open form, while not as

simple as the closed form, has certain advantages, notably that it

may be iterated to display cause-effect "chains” as illustrated in
Figure 17. The DIE displays effects betﬁeen individual variables in S.

More generally, a subsystem §; = { i;l,igg,ooo,fwm}'c.gahas an immediate

effect on another subsystem.§£ = { iﬁl,ibg,oao,iini} C S if there exists

a pair of system-values s, and sy for which prs_sa(sc) = prswsa(sd) and
s ¢ - Y . . s

prsa(sc) £ prsa(sd), such that prsb(frgsc)) = prsb(fr(sd,), i.e., if

there are two system-values different only in their Sg-components which



Figure 15.

Figure 16.

N

Figure 17.
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lead to different §,-values. If §, avd €, are not disjicirt. the zlosed
form DIE is not usable, but the cpen form is; for exampls, with
g; = { ii,ié} R “E = %biéﬁyf} ,» and A as before, the DIE is as shown in
Figure 18,

A convenient feature of the DIE ig that whea soveral variables
are grouped into subsystems, the DIE for the subsystems can be deduced
directly from the DIE for the individuwal variables.

Theorem IV.1

Let Sy and Sp be subsystems of S. Then {ga — (§b} <=

e L=
{axi € SyXye 8y st T >

s

The direction < is obvious. To show =, suppcse S —¥ Sb

as evidenced by system-values s, and sy which are idertical except for

[§ome or all of] their §;~compcnents ard which are mapped by fj into

<
different iswvalues, for some Xj in §5° If s, and s4 differ in on.y one
component, the theorem is automatically satisfied. Suppcose Se ard sy

differ i exactly two components, thcose for Xal and Xago Thern

<
eoo J T X

i
H
e
>

-
“
L

fj(sc) 1

\:'@_49 g coo =
f‘(sd, Lj{xal, X o5 ) x5 # )
where the detg indicate that the remaining components of s, and sy are

identical. The theorem states that either ?;1’—%> §5 or ?;2 ~%>ffi

(or both); we will assume Kgl 4> f3 and f;e +> fs and obtain a
contradiction.

Consider Se*

[4
= u X c v o °
Se < Xa1 *a2? >



I,2 |
3 2,3
Figure 18.
| 2
3
Figure 19.

2

Figure 20.
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Since f (so) =x; and xal -+ YJ, I" s.) = %y because ¢, ard s

~

only in their X;-component. Ard sisce fii8e) = %y and ¥, -f;»x

fj(sd) = Xl because se and Sd differ orly in their i;ncomponento Bat,

fj(sd) = Xqo The contradiction implies that either X N i} cr

X

oo > X, {er both).

+ 3 o . 3 3
ihe theorem is true, then, if s, arnd s

g differ in two rcomponents

only. Tke obvious extension of the fcregoing, wkern S, and S5 differ in

arbitrarily mary components, shows that at least ome variable in §;

must have an immediate effect on i&o

~ —

Qo Ko L'y
It follows from Theorem V.1 that if some variabies are grouped,
i.e., considered as components of a nsw, compourd variable,. the LIE
for the new system can be deduced directly from the DIFE for the old

system. For examplé, if the DIE fcr §' = { ii, ié, ié% is as shown

=

in Figure 19, and if X and X3 are grouped to form Xh = < Xl,.m3> R

the DIE for b = §,Xh’ 2}' is az shown in Figure 20.

The immediate-effect set of X, denoted A(f&)g is defined by

_]_9
i =
A.‘,vxi)-g»x e5| % % J}

In the DIE, it iz the set to whizh X, sends arrows. The immediate-

effect set of §;9§; denocted A(§;)2 is

A(S,) = {xje 5|8, ->Xj}°

It follows from theorem IV.1 that

= AIX, Y,
5 ALXy)

a

If &, and §£ are disjoint sets whose union is §, they are independent

11 and only if ‘Qa -/-—) Db aud Lb‘T” aq 1.2., i

zn[

- .
AE 1§, ana ME Ve

e
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f& may have a delayed effect on iﬁ even if i& 1#?-25, for the
effect may be passed through a third variable or even a whole chain, as
if Xy > X, X > X3, X3 —=> Xy eees Xy —> Xj. For this reason it
is useful to define the k-effect of X; on "ij; X; has a k-effect on i’j,

symbolized i& __li_a.fs, if there is a pair of system~values s, and sy

for which prs_xi(sa) = prs_xi(sb) and pry(s,) # prj(sy), such that
fjfffl(sa) # fjfifl(sb), where fﬁfl stands for k-1 interations of the
system's mapping. Thus i& __5_;»i5 if variations in 2& by themselves

can sometimes induce variations in fs, k steps later. The Matrix of

k-effects Ak [ 13 ] is defined by
= X, ..k X
aijk 1 if Xi.__—4> Xj’

0 otherwise.
The Diagram of k-effects, DKE, is a pictorial representation of Ay.
Definitions for the k-effect of S, on Sy 5 §;-——§4»§£, Ak(ii)’
and Ak(gg) will be omitted since they are strictly analogous to the
earlier definitions.
Theorem IV.l holds if "k-effect" is everywhere substituted

"

for "immediate effect,” and as before,

-— = _ U _ (u.
A (8,) X; € S, A XD

The ngzgggzﬁti,maps all positive real numbers to 1 and all
other real numbers to zero. Operating on a matrix, it creates a matrix
of zeroes and ones.

The fundemental relaticn between immediate effects and k-effects

follows.




Theorem IV.2

M) = /u(,ék} for aill k = 1.

. e k s ..
That is, if X _~aa>x3 tken there must be a chain of exactly k

arrows in the DIE leading from ig to iﬁn

Proof:
For k = 1, tne theorem hclds. Let k = 2, and suppose ﬁ aiig>:1
as evidenced by & pair of system-~values Sg and sy esatisfying the require-

ments. If f_(sp,) = sy and f (s, = s, are identizal, then fjfd{sa) =

= 2 = . .
f,(sy) and X =ls Xy, contrary %o our supposition; therefore s; # s5.
The components cof 8y and £, which differ correspond to a set of

variables §e C.A(ii);

§G =§t j?)! l Pr“‘(Sl) %PTXQS )}

Now si and s, differ only in tkeir g@waompomemts, ard fi{sl} # f'(sg};

thus §E —> igo By theorem IV.l there is an X, ir S such that X ~9°XJ

L e ) |
and therefore there is an fi such that i} —> i& and ik —> iﬁo This

proves the theorem for k = 2.,
Suppose the thecrem is true for k = n - 1, so that *there is a

chain of n - 1 arrows from X; to each variable in Anm1(§£)° 1f

s

X4 _mﬁ_g-ij, there exist system-values s, ard sy differeing only in
their X; ;-components and such that f '\ a> + f sb}, This can

only be the case if afl(sa) # fﬁjl(sb‘; the components which differ

—

define a set S as before:

{ | orp (£77(s0)) 4 prl(frfl‘(sbj’}} .

As before, Sd must have an immediate effect ou X

e Therefcre, there




must be an ii in §a such that the DIE has a chain of n - 1 arrows from
Xi to Xl and also an arrow from leto Xj.
By induction, then, the theorem is true for any k = 1.
Q. E. D.
"Theorem IV.2 has an obvious corollary.

Corollary 1IV.1l

AR € A5(F) = A(... AGGARE))) ...)

That is, the k-effect set of ii is included in the set of variables
reached from fi on the DIE by following all the chains of k arrows.
In fact, if (nl, Dyy ooy nm) is any partition of k,

/*(Ak) < (é?l‘ééz’ e .éém)
and

Ak(’ii) c AM(A2(...(A"m(X;)).-.)).

This fact leads to a simple procedure for estimating high-order Ak

——

matrices from lower-order ones. The procedure has been reported else-
wherela.
The next section will develop the Diagram of Immediate Trans-

missions, which is strictly analogous to the DIE, and will compare the

two Diagrams as the development proceeds.

4.2.2. The Diagram of Immediate Transmissions (DIT)

The DIT is applicable to a system S = &')'(-l, Xy one XM} ,
deterministic or not, in which each variable i& represents a "part."
We will use the same notation in this section as in the preceding, as

far as possible.
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The DIE contains information abcut the system's marping and
shows which parts, actirg alone, can affer* wihich others. Tae DIT
contains information abcut the system’'s betsvior, as recorded in a
frequency table; since the behavior may depend or changing external

factors or, as in the case of a learzirg or adapting systam, on time,

FRE N TNT! 1 g . Y oS k
the DIT will in e a5 the belsvior chan

eg, and in this

]
4]
4

09

sense it is a more dynamic characterization of the system than the DIE.
It shows whick parts, acting alone, affect which others, and it shows
the magnitude of the effect on a continuocus scale, sc tha* cne can see
which effects are strong and which are weak., Thegea advantages ct the
DIT over the DIE are cbtairned, towever, at rae price cof certain compii-
cations which do not arise im the DIE. These will be pcinted out as
they arise in thisz section.

The immediate effect of Xi cn Xj is naturally assoziated with

what happens to fﬁ when Xi varies and all the other parts dec nct; <his
is the basis of the DIE and of the DIT ag well. But while +he NIE

gives the answer to the simple query, Does iﬁ aver vary, or not?, the

DIT gives the answer to, How much of the variation in Xj san be attributed

=

to X;7 In other words, how much cf the variatior in X5 1s dus to X4

alone, on the average? We denote the measure of this quantity by

tij? call it the immediate transmissicn from Xy bo XJ, anl define it by
, 2 = . '
ts 3 LSNXi(Xl P X1).
The prime is used to indicate that we are interested in the transmission

between X; at one moment and X; at the following momert, i.2., as

shorthand for
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ty5 = 2 Prob(T) - Ty x> (X" = X5,
T

Put operationally, ti;j is the result of the following observations and
calculations on S = {fl, 3(_2, coey KM} . By observation one obtains
one or more protocols which list the successive system—ﬁalues taken by
s during a finite time span. Some particular set of values for all
variables except iﬁ is chosen; that is, an element in the set prS-Xi(S)
is selected, and the protocol is scanned for system-values matching
that element (in all but Xi, of course). Whenever one is found, the
value of X; and the subsequent value of Xj are recorded, and eventually
a frequency table for (Xi,Xj) is thus constructed. The transmission in
that table is a measure of the effect of i& on is when the other variables
are constant at the selected value. The process is repeated for all
the other elements in prS_xi(S), and a weighted average of all the
resulting transmissions gives tij’ Thus tij is a measure of the effect
fi has on ij when the effect of all other parts on i5 is blocked.

As an example, we will calculate tlB from this short protocol

of § = {xl, X, XB-}.

time 1 2 3 L 5 6 7 8 9
X 1 3 2 1 3 2 2 2 1
X5 3 1 3 1 1 3 3 1 1
Xy 2 1 2 1 1 2 2 2 1|
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Below are the frequency tables for trne < X5, ¥; > rcupies whinh cosur

orice Or more.

<X2, X3> = <], 1> <3, 2> <1, 2>
¢ w g
Xﬁ 3 Ay
' 1 2 | 1 5 1 2
1 1 o] 1 Ii 1 o P 0 2
Xi 2 Q¢ 0 Xi 2 1 2 Xi 2 1 Q
3 0 2 -3 o C 3 D O

Frequency tables for other <X,, £,> combinaticns contain only zeroces

and hence have zero transmissicn., The +

jo

nles shown have traasmissions

of 0.918, 0.311, and 0.000 bits, and thus

N L L ;
t13 = §= (0.918) + 3 {0.311) + g L0.000;
- = (.50,
When tij > O we say that ii has_an immediate trarsmissior to m}; this

will be symbolized i& -t —» XJ in gereral or by substituting the

numerical value for t, as by ii —> 0,500 ——>~§3 for the exampls.

The matrix T = Ltij:]M M is the Matrix of Immediate Transmissions
= 5 : L S 15

and its pictorial representatiorn is tha Diasgram of Immediste Transmission

§DIT20 The DIT is Just like the DIE exzept that with ea:h arrow or

lire is associated the numerical value of the *rarsmi¢sion. The ma-ri

wall

T and the DIT iu both forms are givern helow, for the example.

0.75 Dok StY
: T = 0,16 2,06 G.16
3,00 Ui 0,00

The closed ferm is shown in Figure Z1 and the cpen form in Figurs 22



0.50

Figure 21,

0.75 |

0.16

0.4l
0.06 2

0.50
0.1e

3

Figure 22,

11k
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The following theorem gives the moss fundamertal relation

between the DIE and the ILIT.

{X19 X.2, o009 M}

Theorem IV.3

is state-devermired, m(I) =< A,
or alternately, {Xi - t 15 = { Zl —> ?jg .
Proof:
Suppose X -+> XJ, then for every pair of system-values S, and
s, differing oniy in their famcomponents, fj(sa) = fj{sbju This
implies that Hs.x, (xs) = C and thus that t,, = 0.
m Q. E. L.

For a state-~determined system, then, the absense of an imm=diate
effect of ?& on is forces the corresponding immediate *trarsmission tc be
zero. The presence of an immediate effect does not, of course, imply
that the immediate transmission must be positive.

Just as in the previous section, we <an generalize the defirition
by allowing it to include transmissions of subsystems on cther subsystems,
and also transmissions across more than cre time interval. We defirne

-t {ogi S tp S “ .
the k-transmission from Sg to Sb'as tsasb,k.

+ =

“Bg,s5p sk a
The k, like the prime used earlier, irdicates a time gap of k time
units or steps. We say that §; has a k-fransmission to Sy if

ts,5,,k > O; this is symbolized a: §, —>t K5 &, or with tke

numerical value in place of the t.

Theorem IV.3 can be strengthened considerably as follows,
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Theorem IV.4

Let -S-a and §b be subsystems of a state-determined system S.

Then iga —t .._l‘i_>§b.§ —-%>{§a —E—>§b} .
The proof is identical in form to that for theorem IV.3 and will not be
given here.

Recall from the last section :

(3Tef X efeon X E>T) e {5, X551,
The corresponding statement for k-transmissions is only half true, that
is:

Theorem IV.5

Let S and S be subsystems of S. Then
T F ¥ <3 X k.7 ry k.3
{3 X € 84, X5 ¢ 8§ s.t. X; =t —=» Xj} —-%’{ Sa->t2——>3b}

and t, = t

2 1°

Proof:
k k
ty, =t = S.) - Ha(Sh)-
2 = ts,,8, ,k = Hs-s,(Sp) - Hs(Sp)
By using the identity H(X, Y) = H(X) + Hyx(Y) and by adding and sub-

(x 'k) , we obtain
J

k k _k k
t, = HS—Séxj) + HX§’S~Sa (sb-xj) - Hs(xj)

tracting HS Xy

X X K
*Hk o (S - Xﬁ) * HS—Xi(xj) " Haxy (x5

J”
Grouping the fifth and third, the first and last, and the second and
fourth terms,

t X, : xg) + 7

k_yk
=1 + T S_- . S ¢ 5U-X
2 7 "Xy,Xg,k T8-S, (847% xg,s-sa( o b 5%y

zt

X; ¥k

lo




In fact the theorem holds if subsystems §5 ard §j are substituted

throughout for X; and Xj; this is aliso the case in the sta‘emert for
k-effects,
That the converse of theorem IV.5 fails can be shown by an

. . « . PR R >
example. The frequency table below gives the freguencies NiX , Y,

XTH‘, Y‘tﬂ‘) for a system S = {I 5 _1}
<X%, ¥¥> =5~
<1,1> <1,2> <2,1> <2,2>
<1,1» 1 0 o 1
<1,2> 0 1 1 0
<XT*13YT+1 >
_gqn <2,1> | o | 1 1 ¢
<2,2> 1 0 0 1

Calculations based on these frequercies give the following values:

bsx % T,y T s Ttvie Ty Ty Ttvx T tyy =0

From this example we see that one subsystem may have an immediate
transmission to another subsystem without there beirg any lower-order
transmissions at all.

The strongest statement it is possible %o make regarding the
converse of theorem IV.5 is given by the following theorem.

Theorem IV.6

Let §a and §b be subsystems of a state-determined system

S. Then

{ga —t X5 _S‘b} = {Hij € 5p s.t. Sy = ¢ k—>23}

e
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Proof':
Suppose that for every Xj in 8, tsa’xj’k = 0. From the

definition of k-transmission, this implies that for every iﬁ in §£,
Ky _ K
HS-Sa(xj) HSa,S-Sa(Xj)
The term on the right is HS(Xg), and it is zero since S is state-

determined; therefore, (xK) = 0 for every X, in 5. . The following
-Sa"J b

J

is an identity.

Ky =
Hy g, (8p) = [xj Z Sb(HS"Sa, (Xlg))] - Ts_sa(slg)

H (s§)=-'r

(s¥)
S-Sa S-Sa b

and since entropies and transmissions are always nonnegative,

K) =
HS-Sa(Sb) 0.

Consequently,

k K
£ - sK) - H
5,9,k = Hs-s, (6) = Hg_ 55, (Sp)

Hs-sa(slt:) - Hy(sy)

= O.

When tsa’sb’k > 0, therefore, the supposition that tSa’stk = 0 for all

iﬁ in §£ must be false.

Q. E. D.
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Evern in a state-determined system, one canzct in general infer

o

from S, —> t "’i,j that there is some X.

i in Sa such that Xi - 1, —-;»X".je

The situation is somewhat different, then, for the DIE and the LIT.
There is a simple relation between the DIE of & sys*em and the DIE of a
related system formed by grouping varisbies into subsystems; the

relation is more complex for the DIT.

Next, recall theorem IV.2, which said that if ii K i;,

there must be a chain of k arrows in the DIE linking 3'(“1 to ‘f_ju The

corresponding statement for transmissions is not true; f‘i - t ——li-> Xj

is possible when there is no chain of arrows in the DiY trom Xy to X

2

One would expect that if ufi were to have a ke«transmissicn *o Xj,
would have to come about by fi having an immediate transmission to the
whole system 5", 3 having an immediate transmission to itself, and S

n

having an immediate transmission to fj, so that § would be a "~harnel

Surprisingly, this is not necessary; below is

a frequency table N(X', X'

for the k-transmission.

+l, X'c.i-?‘) for a system S = { iu}g and

<XT, xS
<1,1> <1,2> <2,1> <2,2%
1 1 0 0
x e
0 0 1 1

from this table one calculates that X hags no immediate transmission to

itself, but that it does have a k-transmission to itself (for k = 2)

of 1 bit.

(The table could represent the transition frequencies for a

Markov chain, if zero in the table were replaced by € and 1 were replaced
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by 1-¢ ; tX,X could then be made arbitrarily small, and zero in the
limit.)

For state-determined systems, however, §'may be viewed as a
"channel" for the k-transmission.

Theorem IV.7

Let 55 and §5 be subsystems of a state-determined system

S. 1t 5, = ty —X>5,, then §, — t; > §, t;> ty, and
§ > t, =8, ty = tp, and§—>t3->'s'b, ty = to.
Proof:

- _ X
o = ts_,5, ,k Hs-sa(sb)'

1

Now tq HS_S&(S' )

k
= ') +
Hg (8') + Hgi g5, (Sp)
The last term is zero, since S is state-determined.

Hs_sa(S' , SE)

T

H, o (S¥) + Hk (s')
5-S4° b Sp>S-Sq

ot
W

ky =

Next, t, = HS_S(S') = H(S")

H(S') + H, (S§)

H(s', sf)

H(sE) + Hx (s")

lul
n
I

= HS_Sa(S%) + (3-8, : Sp) * Hgk(s")

2H, o (sK) =¢t, .
-S,'"b 0
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Last,

ot
|

. k - k
3 = Hg_g(SF) = H(s)

H(sg) + Hg, (sK)

H(s' , sK)

Q. E. D.
In summary, the DIT is similar to the DIE in many ways when the
system diagrammed is state-determined, but otherwise its properties are
quite different and only weak generalizations may be made about it.
Even so, it is a useful device for displaying cause-effect relations
in a system of parts. The next section will discuss the strangths and

weaknesses of the DIE and DIT.

4.2.3. Comments on the DIE and DIT

- In the same way that & hammer is well suited to driving nails
while useless for tightening nuts, the DIE and DIT are tools which are
well suited to a particular class of problems and natuially poorly
suited to others, Both diagrams have arisen from the question, which
parts of this system affect which others? But the emphases in the
two cases are slightly different, for fhe DIE deals with which parts
might affect which others (within the constraints imposed by the system's
mapping), whereas the DIT deals with which variables actually do affect
which others, and how much. Both display the answer in a pictorial way
which allows one to get a grasp of the system-aséa-whole; the DIT can

e drawn with the thickness of the arrow
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ponding transmissions, making the representation even more vivid. When
this is done with the example on page 114 the result is as shown in
Figure 23.

Moreover for a system whose behavior slowly changes, a movie-
style sequence of DIT's (one for each epoch in the system's history)
could represent gross features of the changes in a similarly vivid way.

The major drawback of the DIT is its inability to adequately
represent cause-effect relations in which the "effect" is caused by
several variables acting in concert, unless these variables are explicitly
grouped as components of a compound variable represented in the diagram.
For the variables may only have an effect via their participation in the
group (as in the example on page 117), and equally, variables which
individually have effects may have none as a group, if some cancel the
effects of others. Indeed the latter phenomenon is the essense of
regulation, and it will be discussed more fully later.

There is another disadvantage of the DIT which is important if
the diagram is based on observation of a real sjstem; the length of the
protocol required to minimize the effects of random sampling grows
[roughly] exponentially with tpe number of variables. For this reason

and others, T(Xi : Xé) is in some ways a more practical measure of the
effect i& has on iﬁ than is TS-Xi(Xi : Xj); in the next section we will

explore that transmission and its uses.
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Figure 23.
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4.3. Decomposition of system constraints

Introduction

A dynamic system of M supervariables, observed over n time
intervals, provides values for Mn variables. The total constraint
over this set of variables cannot, in general, be decomposed into a
sum of constraints over proper subsets; this was shown in section 3.3.
The total constraint éan, however, be decomposed into constraints
holding within subsets and between these subsets, and various decompo-
sitions of this type will be discussed in this section.

After a general consideration of such decompositions, a method

of decomposing hierarchical systems will be proposed and illustrated.

4.3.1. Total constraint

In this section we will be considering the constraint over the

set of variables {X% I l1<i<n, iﬁ '3 §'§ representing a dynamic

system of M super-variables over a duration of n consecutive time

intervals. These variables correspond to the values which might appear

in a protocol of length n

time: 1 2 3 n
X |8 i j X7
7 . l
0 |= <
S ° v"\/\a\/'—z ﬂ\"“—v
- 1 n
Xy Xy 2 ﬁ Xy
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We will denote the above set by Zn’ with additional identifying
subscripts, when necessary, Preceeding the n:
Zasn ={X§ ‘ 1 <i < n, fje'§a}.
The quantity of primary importance for a dynamic system

—

S 3{ fl, fe, '}'(—M} is the total trarsmission in S over n time

- ; - m7 AY - ° s . .
intervals, :L'\Zn}o It is the grand transmiscion measuring the

constraint over all nM variables - M variables for each of the n time
intervals. T(Zn) is an upper bound for the magnitudes of all trans-
missions and interactions involving any or all of the variables. The
following sections in this chapter are concerned primerily with diiferent
ways of decomposing this grand transmission into additive components,
by viewing the super-system first as composed of interacting super-
variables, next as a system with memory, and last as a group of inter-
acting subsystems.

Normally, T(Z,) increases without bound as n->w , SO we will
use the superscript L as before to denote the normalizing-and-limiting

operation:
>0

L - lim 1
T(z)-n = (=)

when the limit exists. TL(Z) is the total transmission in the system

Per unit time interval.

4.3.2, Two primary decompositions

By decomposition of T(Zn) we will mean expressing it as a

sum of other transmissions. The primary Decomposition Jdentity is as

follows:
N ; hY
T(S)= )  T(Sg) + T(Sy : Sp: ... : Sp)
k=1
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where S is any set of variables and is the union of the disjoint sub-
sets §;, 1 <k <N. The set Zn for a super-system S ={5(_l,f2,ooo,XM}
can be displayed in the manner shown below, which is meant to suggest

a sample protocol of S.

time: 1 2 3 oo n
= 1 2 n
—— . l
5 |1 3
'S‘ . N\/\J———\,—ﬁ/\.—- —\....) ‘
- 1 I
Xyt XM <§ XM

There are two primary ways to "slice" this display: into M horizontal
strips representing the super-variables, and into n vertical strips
representing the system at the different times.
We denote the set representing a horizontal "slice",
1,2 n . aps s
3 XS 50005K s by . ... The horizontal partitioning suggests the
R J Jt

following version of the Decomposition Idertity:

N
(T, 0= E T(ij,n) + T{Xl‘,mr‘%‘e,n: :X'M,n)"

3=1

Consider first the terms T(X

5 o)> Teépreserting constraints
’--\

internal to the several super-variables. When we say a dynamic system
exhibits memcry, we mean that there is a constrain® holding over the
variables dispiaced in time. For memory implies a constraint, an effect
of past system-values on the present value; a system without memory is

one for which knowledge of the past and present is of no use in predictimg
the future. The constraint representing memcry (cver a finite time

span) in the super-variable Xy is, in this view, Just T(X%:X%:no.:xg)
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or Tg(j,n). The summation in the identity therefore reprzsents the
memory~-constraints in the M super-variables (over n time intervals).

The last term represents the coanstra’nt over the set {<:Xi, Xi,
ooy x‘ll>, cees <X.b]&, xﬁ, ceos x'ﬁ >},, It is the constraint, that is,
binding the super-variables tcgether (but cver only a finite time span).

This decomposition would be appropriate, for instance, in
studying the behavior of a married couple, with the "family" constraint
decomposed into one memory constraint for the husband, another for the

wife, and a term representing the bond between them.

Deroting, as before, the normalizing-and-limiliuy operaticn

“with a superscript L, we have

L lim 1 ,
T (f'j) = naoo m 0 j,n)
and N
L L L, = = =
TH(Z) = 21 TR) + Ty Kz Dy).
J:

The last term is bounded by the constraint capacity of the super-
system s.

The previous decomposition was appropriate to the view of a
system as a collection of interacting parts, each with memory. The
next decomposition fits the view of a system as a number of parts
mutually constrained at each instant, with memory being attributed to
the system as a whole. Denoting, as before, the set {X%, X%, aeey Xbld}

by S* and the set {<sl>, <>, ..., <sn>} by <dp>, it is

n .
Mz )= Y st +r(<d, >).

i=1

The terms in the summation are the instantaneous constraints

holding in each of the n time intervals, and tne lasti term is the
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memory constraint for the compound super-variable <S> (note the
difference between S, a set of super-variables, and <S >, a super-
variable with components.) The term T(<Jn >) might be called the
system memory constraint.

This decomposition-is appropriate for structures of the form
shown, for instance, in piano music, where the restriction to "harmonious
chords" implies an instantaneous constraint while the restriction to
"melodious chord sequences” implies a system memory constraint.

Application of the normalizing-and-limiting operation gives

L _lim 1
T™(<d>) = L., 5 T(<dy>)
and
n
L y ZlT(si) .
= 0} 3= a TS
T(Z)“' neod n TT\<J>)0

The total constraint, per step, is the sum of the average instantaneous
constraint and the system memory consiraint (per step).

The two primary decompositinns of T in) are by no means the
only ones possible, and in the next secticn we turm to a hybrid type,
decomposition of a system into subszystems with memory. First, however,
it should be emphasized that the memury constraint for a compound
variable may be less thar, equal to, or greater than the sum of the
memory constraints of the compcnents. For example, if S = {5(-, Y}
and y’t= %L we can have T«;<JH>) less than [T(;ﬂn) + T(’gn)] by
having X be cyclie:

time: ceey T 5 THL, TH2, THI, TH, X+5, ...

X: 0 eees 1, 2, L, Z, 1, 2, ..

21!
=i

sooy & 1
’ 5 ’

P
w

[
L

no
w

=
-

°




T(<.8n> ) = 5-1 bits
(%, ) = T{Y ) = n-1 bits
Or we can have T(<Jn> ) greater than [_T(fn) + ijn)] by having X
take values 1 and 2 equiprobably and independertly:
time: ..., T, +l, TH2, T+3, T+, T+5, ...

G-
X: esoy 1y 1, 2, i, 2z, s oeo

wj
=

cooy s L 1, 2, 1, 2, .00
T(<£n>) =n bits
T(ly) = T(Y,) =0 bits.
If the supervariables are independent over the n time intervals,
1.2 i ( 4 g H =
i.e., if T‘f‘l,n 'X’Z,n $ e 'X'Evi,n) 0, then the system memory

constraint exactly equals the sum of the individual memory constraints:

M
Medy>) = 3 Tk ) = T(Z).

J=1
This follows immediately from corollary III.2, which gives
n .
i
T(;Cl,n ..... wo) =0 2:1 (s') =0,

and from the decomposition identities for ‘I'(Zn)°

4.3.3. Hierarchical structures

One of the most time-honored and successful approaches to the
study of complex systems has been to view them as composed of inter-
related subsystems, to study each subsystem individually, and then to
study the interrelation between them. The fact that this approach has
been so successful for so long attests to the ubiquity of systems
having structures amenable to the approach - structures in which the

subsystems can be understood more or i wwtely in iscolation and in

{4
[/4}
4]
)
fu
1}
e
]
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which the subsystems interact on a more or less global basis. Simon,
in his delightful paperll, deals at length with such systems and with
a reason for their prevalence; he uses the word "hierarchical,” as do
we, to mean not only the type of structure in which each subsystem has

a "boss," as in the organization of a business firm, but to include
any type of structure in which the system is deccmpcsable into inter-
related subsystems (and perhaps the subsystems into sub-subsystems,
and so on), as exemplified by a book which is compcsed of chapters,
which are in turn compcsed of sections, which are divided into para-
graphs, and 30 on.

Simon points out that the subsystems of most physical and
biological hierarchies can be differentiated spatially, whereas social
hierarchies are most easily decomposed by noting "whe interacts with

whom., "

This difference is largely irrelevant, however, for we note that

in both cases, what allows a collection of parts to be reasonably

called a subsystem is that those parts exercise a stronger effect on

one ancther than on outsiders; that is, the vause-effect links or

communication ties are disproporticnately strong within the subsystem.
The Decompcsition Identity is admirably suited to the decompo-

siticn of § into N subsystems §,, 1 €k € N

N

TME )= z T{E
k=1

+ T{(Z z R 2

lyne” T 2.0

)
k,n’ k,n)°

The identity expresses the total ccustraict cver S as the sum of the
individual covstraints within the N subsvstems, plus the constraint

holding betwzen the subsystems [vencidered as bazic anits); it thus

corresponds precigely to viewing & ag a whole, or. the left, and as a




e
(&S]
]

ccllection of N interacting subsystems, on the right. Firthermore,
each term T(X k,n) on the right may be decomposed by the same identity
{or the earlier ones) into terms whizh correspend to viewing subsysiem
§k as composed of interacting parts {or varisbles, etc.). And so on.
When n = 1, the identity is not well suited to decomposition of
dynamic systems, for if one variablie in a system has a direct effect on
another that effect will usually show up most strongly ome time interval
later. On the other hand, the limitirg form of the above idantity,
L I L, L/ = =
T(E )= TH{Z)+ TS :8: ... : Sy),
k=1
while it represents the decomposition well, contains quantities difficult
to estimate on the basis of experimental protoccols unless those proto-
cols are very long. For these reasons the identity for n = 2,
N

(%,) = z=1 T(zk,2) + T(Il,2: 22’2: coo t X N,Z)’

{

is often the most useful,

We will next suggest a practical method for decomposing systems
assumed to be hierarchical and then illustrate it with an example.

When one is confronted with a mass of data in the form of a
protocol for a system §, decomposing S into parts §i, §é, coasy §h in a
"reasonable" way is a formidable undertaking, especially if littie is
known about the variables., The DIT is sometimes useful for detecting
which variables strongly affect which others, i.e., for detecting a
natural decomposition of 5, but a more generally useful measure is

T(X Xj), the transmission between variable ﬁi at orne mecment and some

1 H

other variable at the next. Of zcurse the best measure of the inter-



dependence of two super-variables is Tb(ii : ?ﬁ), but estimation of
that number from a protocol leads to sampling problems unless the
protocol is very long; T(Xi : Xg) is more convenient statistically and
and also implies a direction - the effect of i& 93)-30

To illustrate how T(Xi : Xﬁ) can be wsed to suggest a decompc-
sition of S into parts, we simulated on a computer a simple network of
one Markov source, one mapper, and three MWI's. We then obtained a
1000-step protocol of the system. The first fourteen steps of the

protocol, & not atypical segment, are shown below,

time: O 1 2 3 4 5 6 7 8 9 10 11 12 13 1k

S 1L (1|1 |1 |22 |1 |1 ]2 |2 |1 1 2 2 1

ted
AV]
=
[
N
n
-]
=
-
N
no
N
it
-
no
no
n

\nN
o
o
n
+
=
H
-

2 Ll 2 |2 1 2 1 2
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Next, frequency tables were compiled and the transmissions T(Xi : Xj)

were calculated. These were as followa:

T(Xy ¢ xg) X4 X5 X3 X, Xs
X1 .12k 013 1.057 <131 073
X5 .002 023 002 .118  .012
X3 .138 ,OL2 o SUL .036 017
X), 002 405 o 20 20T LOLT
X .000 182 L1002 L0 L19h




If the parts ii are represented by (:) and arrows representing

transmissions are drawn in one at a time, starting with the largest

transmission T(X; :

Xé), the sequence shown in Figure 24 is obtained.

The sequence suggests that S can be naturally decomposed into

5= (B, %) a5 - (%, 5,

In fact this suggestion i

DIE for the network is shown in Figure 25.

Note the similarity

between the DIE and the ninth diagram of the sequence.

The mappings for the wmapper and MWI's are as follows:

MWI, #1:
S
M 1 2 3
1,1 1 1 1
1,2 1 1 1
1,3 3 1 3
<I,X3>
2,1 2 > >
2.2 2 2 2
2,3 2 2 2
MWI, #2
X5
Mo 1 2
1,1 1 1
1,2 1 1
2.1 2 2
<X Xs> 5.2 >

(X])

(x!)
2



MWI, #3:

X3
s
1
X 2
3
Mapper (with delay) #u:
X5
My 2
1,1 1
1,2 2
2,1 1
2,2 2
3,1 1
< Xp,Xg) 3,2 1
MWI, #5:
X5
/s 2
1,1 2
1,2 1
2,1 2
¢ FuXy? 2,2 1
3,1 1
3,2 1

(x3)

(X&)

134




Figure 24.



Randcem
Source

Figure 25.
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Evidertly a "good" decompesition of §, other things being equal,
is one for which the number of parts is “reascnable" {pertaps approxi-
mately the square root of the rumber of variables) and the interpart
constraint is small compared to the total - as small as pcssible, in
fact. The identity and the asscciated expzrimertal values ‘or the
decomposition S = §é U §% are giver. below.

T(2p) =[T(Z,5) + M2y )] +T(E, Iy 0)

5.100 = [1.957 +2.722 ] + 0.k22,
The transmission between the subsystems is only about 8% of the total,
indicating that the choice of §; and 5% is a reasonable one. By way of
contrast, if S is decomposed into §g = { i&, iél} and §ﬁ = %;ié, ih, fs} 3
a decomposgition which the T(Xi : Xj) values imply is inappropriate, the
following values result:

T(Zp) = [T(Ze0) +MTg )] + Tz, 5 Z4,0)

[0.168 + 1.966 ] + 2.97.

Here the transmission between subsystems accounts for 58% of the total,

5.101

"

evidence that 5; and §a do not constitute good choices for subsystems.
To continue the analysis, §; can be decomposed two ways - into

individual memories plus intervariable constraint,
T(za,2) = [T(ﬂl’g) + Tﬂ(g,e)] + T%,z :XB,Z)
1.957 = [0.124 +0.541 ] + 1,292

or into instantaneous constraints plus system memory,

[2(s3) + 2(s2) ] + m<d, o> )

T(za,2)

L}

1.957 [ 0.1kk + 0,144] + 1.669.
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Neither decomposition is very successful; the numbers indicate a strong
intervariable constraint and a strong system memory. The same is true

of Sb:

w

T(Zb,2)

[T(Kp,0) + Ky o) + T(Ks ] sz,?%u,z‘ 7(5,2)

2.722 [0.023 + 0.007 + 0.194] + 2.498

1(2y,0) = [2(s5) + 7(s5) ] + 1(<dy o>)

2.722 = [0.201 + 0,201 | + 2.320
The indications are that §a and §b are not readily decomposable by
these identities.

Analysis of §a and §b in terms of their kinematic graphs6
bears out this conclusion. The kinematic graphs of S,, with
representing the state <X; =1, X3 = j>, are given in Figure 26. The
arrows from transient states are shown dotted. Sa enters state <3,3>
only when the input contains a sequence of four or more consecutive 1's,
and it leaves < 3,3 > whenever the string of 1l's ends.

The kinematic graph of §b> with representing state
<i, j, k >, is shown in Figure 27. §b tends to follow the cycle

<1,2,1> —> <2,2,2> —> <2,2,1> —» <2,1,2> —> <1,2,2>
LY _

until §a enters the rare state < 3,3 >; at which time gb socn "resets"

to <1,1,1> and waits for S, to change state; then §;, starts up again.
The decomposition identity suggested that S, and Sy were only

weakly interconnected, as is the case; S, influences S only through the

rare state <3,3>, and §; does not affect, 8, at all. Other identities

suggested that the subsystems wculd be hard to break up. If the
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x' = |lor2

Figure 27.
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reader doubts it, let him try!

This example illustrates a method which could well be vary
useful in the decomposition of complex systems, particularly in situa-
tions where the experimenter kas very little idea as to which variables
can be naturally grou.pede It is an allmtéomcommon oczurrence in science
for an experimenter tc be faced with a highly complex system in which
data is easy to obtain but hard to "make sense of" because the experi-
menter does not know which variables are functionally "close" to which
others. Faced with the overwhelming complexity of a large system such
as a brain or an industrial society, the scientist may easily be deleated
by the data unless some sort of simplification is possible. In such a
case, the method §u$lined here may be & useful simplification since
it suggests a natural decomposition of hierarchical systems.

The transmission T(Xi : Xj) used in the method is a simple
form of what we might call information transfer. The next section

will take up in more detail the topic of information transfer.

4. 4., Information transfer

Introduction

Frequently complex systems contain both sources of information
and passive components which merely react to information. In this
section we will comment on the information transfer in such systems,
after first exploring information processes in purely stochastic and

then in purely deterministic systems. The topic is important toc the
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understanding of regulation in complex systems, since as we shall
indicate in the chapter on regulation, regulators often take the form of
deterministic subsystems accepting information and transforming it into

appropriate regulatory action.

4.4,1. Information in Markov processes

If the process {le, X2, X3, ...} is a Markov chain in which

each variable Xk takes values from the finite set X = {.xl, XDy eaey xm} ’

]

it is natural to define the Markov super-variable X =< Xl, X2, X3, oo

corresponding to the process. The transition probability matrix for X
18 g = [pij ]n,n:

Pij Prob { X X; X xj }

We deal here with discrete, ergodic Markov processes only.
From the definition of the Markov property,
p(Xm+1 ‘ Xl, X2, ceoy XB) = p(Xnﬂ' lxn) Vn =1,
it follows that

+ +
I{xl, Xa, aoog Xn(xn l) = }Ixn(X:n l) V n al’

This is well known, but to the author's knowledge it is not well known
that for an ergodic process the two statements are actually equivalent.

Theorem IV.8

If the process &Xl, X2, csey Xn, } is ergodic, then
the two statements below are equivalent.

(1) ¥n z1, px® | xb, %2, ..., X)) = oM | X,
i.e., the process is Markovian.

(2) ¥n=1, K1 2, ... o (x") = Hmon(x

n+l
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That (1) implies (2) is well established elsewherel3; we will
show that (2) implies (1). The entropy ejuation implies the probability
equation when n = 1 for any ergodic process, Markovian or nct. For
any n = 2, suppose that

_ n+l n+l
Bel, x2, ..., xa(X77) = Bn(xX*)

°

By definition of conditional transmission, then,

&d<f%x%,°”xml>:XM1)=o

which by corollary III.4 implies that
p(xt, ..., ¥B-1, xo+l | x0y = pixb L., x2=1 | x®) p(xntl | xB),
Multiplying by p(X") gives

-+
p(X19 LU Xn l)

p(sl, ..., X?) p(xm*l | xn)

1 4] 1 n 1 ny i1 :
p(XT, ..oy XP) XV | XN, Lo, XB) = 00X, L., 2R pXP | B

p(x®*1 | x1, ..., xB) = p(xm*L | xn3,
Q. E. D.
For ergodic processes, then statement {(2) can be used as the
definition of the Markov property.
The entropy of and constraint within a finite segment of an
ergodic Markov chain are proportional to its length, and they obey the
following equations:

HxY, X2, ..o, X7) = 0l (€°) + 2(x 2 )

XY P : ... : XB) = nn(xt ;X2
Moreover any ergodic process satisfying either of the above for all
b r

$ e s mama mmmamacad e hlaa
AWEIS afle LUV CUW A LaeT

n z 1 is necessarily Markovian. These asser

following:
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Theorem IV.9

Ir {Xl, X2, veoy Xi, } is an ergodic process, then
the three statements below are all equivalent.
(1) The process is Markovian.

(2) Nm>1, B, X2, .., X0) = aH g (XF) 4 T(x! @ x2)

(3) Von>1, 7(xt:x2: ... :x0) = (n-1)T(x} : x2),
Proof:
To show (1) = (2): The identity

B, €, ., X0) = BO) 4 (F) ¢ o()7) +

+ H x?
xl, x2 Xn-l( )

, . e ’
together with the Markov property imply that

H(XL, ..., XB) = H(x) + B (xB) + ...+ Hyn-1(xXP)

= 1(x}) + (n-1) Ky ()
= 1 () + 2(xt : x2)

for all n, so (1) = (2). To show {2) => (1), we assume (2) true
and show by induction on m that for all m > 1, the following assertion

follows:

{Hxl’ k() = mg(x6*L) for all k, 1S ks m} .

The assertion is automatic for m = 1. For m = 2, we actually
have only to show that the assertion holds for k = 2. The statement
(2) above, with n = 3 and with liberal use of the property of station-
arity, ylelds

HxL, X2, x3) = H(xY) + Hxl(xz) + sz(x3).




This, with the identity

H(XT, X5, x3) = mixb) + Ho () + By o(0)
¥

establishes that
3 '3
X7) = X).
Bl x2(X7) = Ho(x)
Thus the assertion is true form = 2,
Next, suppose it true for m - 1. To show it also true for m
requires only to prove it for k = m. Statement {2) and the property of

stationarity yield

B, oo, BL) =m0 2 ma O2) 4 4 1 () + (X2,

The following is an identity:
HxL, ..., @) = 5(xl) + X2) + L., + .1 {xm
( ’ ’ ) ( ) H-xl( ) Hxl,,u,xm l( )

+ K
XL, ... X0

(xmly,
The first m terms on the right of both equations are equal, term by

term (since the assertion is true for m - 1). Consequently,

Bl @) = B

We have just shown that if the assertion is true for m - 1, it is also
true for m. Consequently, by induction it is true for allm = 1.
Therefore, statement (2) implies that for allm = 1,

H () = B, ()

x1,...,x0
which by theorem IV.8 establishes that the process is Markovien. Thus
(2) = (1).

To show (2) = (3) is simple. We assume, for any n > 1, that
(2) is true.

2

- B, X2, ..., XB) = - nHXl(XZ) - nixt o ¥9)
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Adding nH(X1) to both sides, we get
n(xt) - B(xY, ..., X®) =n [H(x2) - Hx]_(Xa) 3 -T(xt: xP)
ot s P . X®)e= (n- 1) T(X )
showing that (2) => (3). Reversing the process shows (3) =>(2).
Consequently, (1) & (2) <= (3).
Q. E. D.
This theorem and the one before provide four equivalent defini-
tions for ergodic Markov processes. The quantifier "for alln > 1"
is essential, since non-Markovian processes can satisfy the criteria
for all n up to a finite N,. For example, if one writes down in order
the binary equivalents of the series {0,1,2,...,15,0,1,.,.} ’
{ 0000 0001 0010 .... 1111 O000 ..co. } s
the resulting chain of O's and l's, which is certainly not Markovian,
satisfies all the criteria for n < 4. In fact one cannot cqnclude from
any test based on observations of finite length that a process is
Markovian, for one could never eliminate the possibility that the
process was cyclic and only part of a c¢ycle had been observed.
From the preceeding theorem it follows immediately that if
X is a Markov supervariable (and ergodic, the only case we have

considered), then

and the per-step memory constraint is
hd) = o(xl : %2).
If <8>» =< 5(_1, ceey YM > is a Markov super~variable with

components, the components need not themselves be Markov super-variables.
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Obviously they may be, for instance if the components are independent,

but the following transition matrix shows that they need not be.

<x11{, X12‘ >

1,1 1,2 2,1 2,2

1,1 0 0 0 1

1,2 1 0 0 0

<xBEHL KL o 0 1 0 0

1 %2
2,2 0 0 1 0
Sample protocol:
time: 1 2 3 L 5 6 7 8
X : 1 1 2 2 1 1 2 2
5 1

22: 1 2 1 2 1 2 1 2

Here <S> and -X_e- are Markovian but T(I is not.

Whenever one or more components are not Markovian, however,
there must be a constraint between the components if the whole is to be
Markovian.

Theorem IV.10

Let § = {fl, oy ooy )_(M} and let <S > be Markovian.
Then {T(-ST) = O} %i\i i—j €8, fj is Markovian.}
Proof:
Suppose T(S) = 0. By corollary III.2, T(S1) = 0 for all i and
consequently the system memory constraint is the sum of the individual

memory constraints:

M
T(<St>: <5%>: ... :<8%>) =7 T(X?j‘ : X? T oee.e d Xg),

J=i
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If <S> is Markov,

(n - 1) T(<Sl?=<32>) =b% T(X:‘; : X?: ce.  X3)

5= ’
4 1 2 4 1 2 n
(n - 1) 3;1 T(xj : xj) = g;l T(xj PXD . XJ)

Therefore
5 1 2 n 1 2 ]
gil T(xj PXS ... xj) - (n~-1) T(XJ,: xj) = 0,

For every j, the quantity in brackets is nonegative. To see this, we

expand both parts by identities, and use the stationary property

freely:
(Xt

Pee i) = (- k) - [Hxl(xz) * g o00)

Xn-—l(xn) ]

(n - DI 2 ) = (o - DEE) - [ 5202) + 1200)

+ * 00 +H
xL,x2

gocey

+ e s 0 + Hxn"’l(xn)]

By subtracting the second identity from the first, we obtain on the

right a sum of transmissions, for

k+1 vkt+1 ! 1 k-1, . vk+l
-H X + H 1 (X =T <X coey X >: X o
Xl ,X2 yooo ,Xk( ) Xk( ) Xk\ ’ s )

A sum of nonnegative quantities is zero only if each term is zero;

consequently for every j = M,
wL . 2 . S « C 1., 2
T(Xj PXG o een xj) = (n - 1)T(xj : xj)
and each 3(-3 is Markovian, by theorem IV.9.

Q. E. D.
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4 4.2, Information in state-determined systems

The sequence of states in a state-determined system6 with

<gl

> = <X§'_, X%, cooy Xnid>,

{ <sl>, <s2>, ..., <si>, ... },
represents a special case of a Markov process, in whick all the condi-
tional probabilities are either O or 1. The system's mapping, f;, ma.ps
the set of states into itself; given the present state s° in S, the

probability that the next state will be fr(s") is 1. This of course

means that H i (<sitl >) =0 for all i and consequently that

H(<s'>, <>, ..., <s®>) =H(<sl>).

We assume the system to have a finite number of states, so that

H(< st >) is finite. The < and > marks are actually redundant in H
and T expressions and will be omitted hencefortk. In the notation of
section 4.3,

H( ¥ ) = H(sh)

The uncertainty in a sequence of length n is precisely the ancertainty
as to the initial state of the sequence; The per-step entropy of the
sequence (in the limit) is consequently zero, which is to say that the
sequence carries no information (except information about the initial

state):

(s ) - Lm HET) o

00 1n

°

The components Xj

In fact any deterministic sequence has a per-step entropy of zero.

carry no information either, in the limit.

Any state-determined system {with a finite number of states)

-~

o]

will eventually fall into a cycle of behavior“”, and the components,
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if the state is compound, must then fall into cycles also. The behavior

of each component is then deterministic and predictable without reference

to any other component, so that when <S> is state-determined and

finite,
(=) =0,
HL(7(j) =0 for all j <M,
TL(%l:xQ: :X.M) = 0.
Although the observation is somewhat frivolous and not very
meaningful, it could be pointed out that since T (7(1: ng ﬂM) = Q

always, any part of a state-determined system, when viewed as a channel
between two other parts, has a channel capacity of zero. The Markov
super-variable <S> suggested by the state-sequence is not necessarily
ergodic nor even stationary; in fact the sequence of entropies H(Sl),
H(S2), cees H(Si), ... is monotonically decreasing, since

nst, s = m(st) + By (sTTH)

i Litl (il i
Hist, sty = H(sY ) + Hsﬁ.l(t.l}

and consequently

1+1 i+l
) )

H(s*) - H(S = Hsiu(si) - Hei(8

i
mHSii-l(S ) = O.
Since the H(Sl) are monotonically decreasing, so are the

(s : si*tl), for

T(si . Si*"l) = H(‘mi""l:’ - H,.j_‘:'gi-*-l)
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The constraint in the sequence <:Si> is the strongest mathematically
possible:

(sl : 82 : .., : sm)

ri 3 o I
; lH{slj - [H(sl) - Hsi(sa, s3, ..., s“ﬂ

n
= 3 H(si,
1=2

- X
+ l, Sl+2, coos sT™) take a particularly

The interactions Q(S
simple form and are also monotonically decreasing in magnitude:
a(si*, si*2, L., 51y o (ay® mstty,
To establish this, we let i = 0 for convenience and use inductior on n.
For n = 3,

Q(st, s2, s3) =7 182 : 83) - 7(s2 : §3)

]
m:::
[
N
T

In a state~determined system, the entropy of any SP conditional on Sk,
with k < n, is zero; given the state at any time k, one can calculate
with no uncertainty what the state will be at any later time. There-
fore all the subséripted terms above are zero and

a(st, 2, s3) =-n(s3).
Now we suppose that Q(sl, s2, ..., s®) = (-1)BH(sP) or, more conveniently
for our purposes, that Q(S2, S3, eeey SEH) = (21)PH(SPYL) ) & mere
relabeling. From the iterative definition of Q,

+ 2 +1 P +1
a(st, §2, ..., s®) = Qq1(s%, ..oy 8% - a(s?, L., 57,

The subscripted term could be expanded into a sum of entropy terms, but
the subscript of each would contain Sl and consequently all weculd be

4
zero. By inspection, then Qsl(sz, coes 881} = 0 and
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(s?, ..., s

- [0 ms™™) ]
(_l)nﬂ. H(sn+l) .

il

"

Therefore, by induction we conclude that for all n = 3,

aist, ..., s%) = (-1)" u(s™).
Q. E. D.
If <S> = <5(-l, i2’ ooy XM> is a state-determined Markov
super-variable with components, the components need not themselves be

state-determined. The example in the last section, with protocol as

follows,
time: 1 2 3 L 5 6 7 8
X : 1 1 2 2 1 1 2 2
‘S— 1
22 : 1 2 1 2 1 2 1 2

illustrates this; <S> and fz are state-determined but il is not.

In an analogy to theorem IV.10, however, we can prove that if
<S> is state-determined while some component X is not, then there
must be a constraint between the components which "accounts" for the
fact.

Theorem IV.1l1l

—

Let S = {xl, 3‘(’2, cees )TM} and let <9 > be state-
determined. Then
{T(§) = o} = {V )'('J €8, Xy is state-determined}
Proof:
i+l)

If <S> is state determined, then Hsi(S =0 for all 1 =1.

Consequently for all i =1,

-*.
nsithy oot gt =0,




153

It was shown earlier that when T{S} = Q, the system memocry constraint

equals the sum of the memory constraints for the individual variables.

Thus for all i = 1,

M . .
mstth) - > (] : x}*’l) =0,
J=1

o=

It was also shown, in corollary III.2, that T{S} = O implies T(Si) =0

for all i = 1. This in turn implies that

N M .
si*ty = 3 mEith,
=t Y

Therefore we conclude that for all i =1,

M . C

b [H(x3+l) - T(xj x}*l)] =0
J=1

M .

S oH; (i = 0.
=1 X3

This sum of non-negative quantities is zero if and only if for every
J <M, and for all i = 1,

i+ly o
Hxé_ (XJ ) 0,

that is, if and only if each iﬁ is state-determined.
Q. E. D,
Having considered Markov processes and state-determined systems,
we turn in the following section to systems which are part random and
part deterministic: systems involving both Markov sources and finite

state machines.

4.4.3, Information transfer through finite-state machines

Any arbitrarily complex netwoerk involving finite-state machines

(machines-with-input, mappers, and automata) and Markov sources may
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be viewed as a single Moore automaton driven by a single Markov source,
both the state of the source and the state of the automaton having,

in general, several components (see Figure 28). Although it is not
always advantageous to view a network this way, the fact that it is
possible makes it evident that we should understand the information
transfer in this paradigm case before attempting more complex cases.
The understanding of this simple case is also essential to the under-
standing of later sections on regulation.

The fundamental information quantity associated with any
finite-state machine is its channel capacity. The capacity of a
mapper is log M, where M is the number of distinct values in the range
of the mapping. The channel capacity of a MWI is log W,, with W, as
defined by Shannon5o And section 3.6 of this report has provided a
way to calculate the channel capacity of an automaton. That section
also provided a procedure for constructing a source which maximizes
(X - Y), and therefore also HL(?), at the capacity.

It is interesting and useful to note that if the output (i.e.,
state) sequence of a machine-with-input has the highest possible
limit-entropy (or just “"entropy", for this discussion), then the
sequence is a Markov chain. Thus if the output is not Markov, one
may be sure that the MWI is not operating at capacity. In the case
of an information-preserving MWI (a MWI for which one can deduce, by
observing any allowable output sequence, exactly which input sequence
caused it) this is almost obvious, since the input must be zero-order
Markov to realize capacity in that case. That the output must be

Markov in the more general case follows from the fact that if a
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N -
distribution P(Z" | 2, 22, ..., 2Nt

) is to maximize the output entropy,
it must make all allowable state sequences of length N (as N goes to
infinity) equally likely; that fact actually specifies the distribution,
which Shannon has shown is Markov5° From this point of view, a MWI
operating at capacity is a device for transforming an input which is
not Markovian (in general) into an output which is.

We will consider now the problem of finding how much information
the output sequence carries when driven by a Markov source of known
characteristics. We assume that we are given a state-transition matrix
P = I:Pij] for a Markov source, and.mappings f, and g, for the
MWI and mapper;

fo:

Xx Wy, > W,
8 Wo —> Y.
The situation is represented in Figure 29,

If the input to a MWI is Markov, the state-transition sequence
is only Markov under exceptional conditions, and information is
usually lost in the MWI (that is, one canrot usually deduce what the
input sequence was from the state sequence alone). Our job of finding
the output entropy is consideratly simplified if we break the MWI into
two parts - a new MWI which does not lose information, and a mapper
which does, as suggested in Figure 30. The new MWI is constructed so
that for every Zj in Z, f maps X x Zj one-to-cne onto Z, and g is
constructed so that the sequence W, is the same as with the original
MWI. This amounts to the introdusction of extra states in the MWI, so
as to make Z a noiseless coding of X, and the subsequent elimination of

the extra states by an information-losing mapping. For example, if




x|

P X > fo Wo as L—Y—b (Dutont)
Figure 29.
Z w Y
z > g, Wo 9, ——>(Output)
Original MWTI

Figure 30.
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with the multiple entries (which make f, information-losing) underlined,

we could construct f and g; as follows:

~N O W

f 1

1 1

X 2 3
3 2

g1 I 1

B

When this done, Z is a second-order Markov process,

i+l 1 i-1 i
pz' | 27, ..., 277, 27) = p(2

i+l l Zi-l Zi)

since given Zl-l and Zl, one can deduce Xivl, and the further uncer-

tainty about Zi*l is exactly the further uncertainty sbout X*. To find

the output entropy, then, we need only to consider how mapping a
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second-order Markcv process by an irformation-losing mapping, (gogl),

changes the entropy. By a change of variables,
vl = <Zi°l, zi >

vi = <Yi-l, Yi >

the problem is simplified still further, since if Z is second-order

. . -~ [ 4
Markov, U is LIlI’St-’OI"QEl“] Markov.
Thus by successive steps we can reduce the original problem to

the problem of finding the output entropy which results when a Markov

input sequence X is mapped by a convergent mapping M into a non-

Markov output sequence Y.

Markov Y 3 ( non-Markov\
input S \ output

>

The exact solution to this problem is not known, but for ergodic

chains an approximate answer can be obtained from the inequalities

Hl y2, . Yn(Yn+l) < HY(Y) < Hyl 2 Yn(Ynﬂ)

9 ovcog

in which the outside quantities converge monotonically to HL(T) as n
goes to infinitylh°

The fact that a finite-state machine with Markov input usually
has & non-Markov output does not in any way imply that information is
necessarily lost. Indeed, it is possible to have an arbitrarily long
chain of finite-state machines, for example MWI's (see Figure 31),
and as long as all of them are information-preserving, HL(?L) will

equal HL(Y) even though -Y—n will be (n + l)-order Markov in general.

An information-preserving MWI can be viewed as a coding device which
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encodes the input sejuence inte an output sequence ir such a way that
the span of intersymbol constrairts is lengthered.

In fact, most finite-state machires have a tendency tc increase
the span of intersymbol constraints as they "transform” a seguence
from input to output. By this is meant that if one must *ake n
sequential symbols into account to get a reascnably

for the input entropy,

i+ BeS
Hyi+l - yimedl

HY(T)

-1]<€ <L 1

then one must usually take more than n symbols into account to get an
equally good approximation for output entropy. Finite-state machines
tend to "spread out" the information, to put it loosely but pictu-
resquely. This is, of course, only a tendency and nct a law, the
notable exception being when the input is matched to a MWI so as to
realize the channel capacity; ir that case quite the opposite takes
place, for the output ends up Markov althcugh the input seldom is.

In the light of Birch's resultslh, and in view of the fact
that when a Markov sequence is mapped by a convergent mapping the result
is almost never a Markov sequence, it is rather surprising that a
mepper may sometimes reduce the span of intersymbol constraints just as
a MWI can. The example of section 3.6 shows this clearly; there the
MWI part of the automaton transformed a ncr.-Markov input sequence into
a second-order Markov state sequence, and the mapper transformed that

further into a [firstworder] Markov ocutput sequence.
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4.4.4, Information transfer in networks of finite-state machines

The fact that the span of intersymbol constraints tends to
increase as & message is passed through one or more finite-state
machines greatly complicates the analysis of information transfer in
complex networks of such machines, unless the network is viewed as a
single automaton. One might think that the situation would become
completely unmanageable in networks with feedback, for example the
classic configuration shown in Figure 32. In this network, the input
sequence is combined, by way of the mappings, with various vestiges of
its own past; one would expect that the span of intersymbol constraints
in the output sequence would be immense. In fact, however, if the MWI
denoted by f, is operating at its own capacity (or close to it), the
output sequence is Markov (or nearly so)° We shall have more to say on
this topic in later sections on regulation, and here it will suffice to
point out that when an input sequence is "processed” by a network of
finite state machines, what results need not necessarily have a larger
span of constraints than the input.

We can deduce several inequalities relating the input, state,
and output entropies for an automaton {see Figure 33).

The inequalities all derive from various decompositions of
H( Z n); for one,

HE ) = e, 8, L., XB, 2h, 28, L, 2, T, Y, ..., Y%

1 1

n n
H(X, ,..,X)'%"Hxl Xn(z, seey Z7)

9 oo ey

1 n
tH1 oy gl ga(Y e ¥ ).
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Input X Output
Sequence = f, Sequence
Figure 32.

X z Y
Source f >
Automaton

Figure 33,



164

Iif Xl, coey X" and Zl are known, there is no. uncertainty about

Zl, cees z®. And if Zl, cooy z" are known there is no uncertainty

about Yl, coes e, Consequently

HE ) = HxL, ..., XB) + Hyl Xn(Zl).

co0o g

Another expansion of H( Z ) is

H(Z ) =HEh, 2N v Ey e, X

1
+ H Y, ..., Y.
AU L C @ eees 1)

The last term is zero as stated before. Putting the two expansions

for H( £ ,) together, we obtain

1l

H(zt, ..., 2%) =Y, .., XP) +Hy a(zh)

seeey

1 n
-H - Zn(x s eee X0

Z ,090’
The negative term is the uncertainty about the input sequence which
remains after one observes the state sequence. Dropping it gives

1 1 1
s eeey ZM) < HEXS, ..., X)) +H xﬁ(z )

H(z X, ...,
or, a less strict inequality,

a(zl, ..., z%) < H(XY, ..., ¥*) + H(ZY).
Of course since H(Zl, ceey 20, Yl, veey, YB) = H(Zl, ceey ZM),

1 1
s ey ZB YR YY) < HEES, ..., XP) + E(ZY).

H(Z
In the limit, as n —>» oo ,

H(X) = EY(SZ,¥>) = uM%) = 5Y(Y).
The entropy of a sequence, as it is transformed to state-sequence and
output-sequence, can only fall; if one is more uncértain as to the

output than the input (for a finite sequence) this surplus uncertainty

is only due to uncertainty about the initial state of the network,




and this finite uncertainty is relatively unimportant in the limit. In
other words, finite state machines caanct generate information; they
can only transform it or lose it,

Generalizing from the automaton to a network cf interconnected
finite state machines, this has the follcwing cossequences:

Theorem IV.12

Let §% = {_ii, ié, coasy iﬁ}’ be a set of supervariables
which are inputs to a network of finite state machines, and let
the state and output supervariables for the machines in that
network constitute the set S = 1 Vis Vo, eooy Vg.}o Then for

anyn =z 1,

o)

1 n 1 I
(a) H(SV, seoy SV) = H(st sooy s};) + HS}IL",9 v

n/s
gy
~x

0009

£
= \
ST, ..., 8B
1 1 1
(b) H(Sy, ..., SY) < H(Sx, ..., S%) + H(Sy).
(c) H“(Sy) < HE(Gy)-

The proof is a trivial extension of the foregoing argument. The

theorem has some immediate consequences. For one, if Sj is any subset

of 5, then H(ng', ey ST = H(ST, .., SB) and HL{‘§j) < HY(8,), so

~ the entropy of any subset of the machine’s supervariables is bounded

by the same quantities as the whole. This in turn implies that the
limit-transmission between any k disjoint subsets of 5} satisfies the
inequality

TS,y ¢ Syp ¢ -ee ¢ Byy) = (k-1) HU(S,)

X

Limit-interactions are also bounded; all n-th order interactions {those
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with N variables in the argument) are bounded by *+ 2N-2HL(§%). There
are, of course, analogous limits for the non-limit quantities.

Through the preceeding inequalities, the incoming entropy limits
all information quantities relevant to the study of the network. We
have in the theorem another verification that ir a network of state-
determined machines, with no information sources pumping in entropy,
all limit-entropies, limit-transmissions, and limit-interactions are
Zero.

Notice that the theorem covers the nonergodic case (in state-
ments (a) and (b)) as well as the ergedic,

The transmission between two complementary parts (whose union
is S,) is bounded by HL('S‘;’in).. This fact will be important later when
we consider networks decomposable into a regulator and a regulated
part; the transmission between these parts is a crucial quantity.

An application of the cut set theorem of Elias gg_gl}o leads
to a possibly smaller upper bound for the entropy of any subset §£ of

Sy. Suppose that a network of finite state machines and information
sources (not necessarily Markov) is specified bty giving all the mappings,
all the interconnections between the parts, and the entropies of all
sources. The channel capacities of all the finite state machines can be
found, and a graph of the type shown in Figure 34 can be drawn. The
graph is essentially a diagram of immediate effects, with the addition
of the sources ?& and arrows showing which of the %3 in.g; they affect.

Each line leaving a ﬁﬁ is labeled with the cliancel capacity of the
associated machine, and each line leaving an Xi is labeled with the

source entropy. We assume for the time being that the graph is connected.




Va Vs X7
| 2
. Cur
2 \
Va Vs Ve

Figure 3h4.
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A cut set on this graph is a set of arrows such that if all
arrows were deleted, the graph would fall into two or more unconnected

parts. A simple cut set is a cut set such that if any arrow is removed,

what remains is not a cut set. For example, the cut shown by a dotted
line on Figure 34 prescribes the simple cut set A:

A={l-—>h,’+—>3,5-—>2,3—>5,3->6}‘

With each set §k c §§ there is associated a family of simple
cut sets separating 5% from §k; the value of each simple cut set in
the §k family is the sum of the numbers on arrows crossing the cut
in the direction of Sy. If §k = {_Vu,v5} the set A above is in the
§£ family, and its value is 4 +2 + 2 = 8,

By slightly reinterpreting the cut set theorem, we conclude
that the channel capacity from Eg to §£ cannot exceed the minimum
value among all simple cut sets in the Ek family. With §£ = & Vu, VS}
the minimum value is 5, from the cut set B:

B={O —>1,2—>3,l+->3,3->5,5—->6}.

It follows that the limit-entropy of any variable or set of
variables cannct exceed the minimum value among all simple cut sets
separating it from §¥; for the example HL(§k) < 5.

We assumed above that the graph was connected. If it is not
connected the same results hold; we need only redefine a cut set as a
set of arrows such that their deletion separates the graph into more
disconnected subgraphs than originally existed, and so on. If the
original graph is not connected, and if we chcose two variables in
separate parts, it is plausible to conjecture that the transmission

between them must be zero. This is irdeed the case if the source




X, 1V
X2 > V2
Figure 35.

Vi
X
v,

Figure 36.
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driving the one part is independent of the source driving the other.
For with the prototype graph of Figure 35, we have HL(iia ?i) = HL(ii),

HL(fé, V) = Hlfié), ard HL(iis Vi, X, Vo) = IwII"'(‘)'(“l‘3 X5). Consequently

Lz .= o - -
{T (Xl : X2) = 0}%{1?1‘(‘}(15 Vl> : <X29 V2>’} = O}

md Y7 T

and by corcllary IIT.2, this implies T (V, V2) = 0,

Moreover it is reasonable to expect that if there is no chain

of arrows leading either from V£ to ?ﬁ cr from Vj

graph, then TL(VA : Vs) = 0. But piausible or not, this conjecture

to V& in a connected

is false, and to see that one need only consider the graph of Figure 36,
in which Vi and Vé are identical machines subject to the same input:

Vi and V,, being identical, behave identically, and TL(VH : Vé) = H{V,)
We shall have more to say later about this important situaticn, with
regard to regulation; for the moment it serves to illustrate the fact
that there may be high transmission between two parts which have no
direct effect on another via mappings or even via mediating variables.

With this background on information transfer in networks,
we turn now to the subjects of regulation and of information transfer

in regulatory networks.,
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Introduction

The preceeding chapters have bzen concerned with the ralevance
of information theory to complex systems in gereral; in this chapter
ve specialize to those systems in which cne part is trying;to regulate
another part. Section 5.1 contains general remarks cn regulatiom, and
shows in a qualitative way the importance of information to successful
regulation. Section 5.2 quantifies and proves more rigorously the
results of the preceeding section, and sectiom 5.3 provides an
information analysis of three basic regulatory schemes. The paper is

concluded with some brief, general remarks on regulation in section 5.4,

5¢1s Information requirements for regulation

Up to this point, we have mentioned the topic of regulation
only in passing; we have given several results showing how the methods
of information theory are useful for the understanding of complex
systems, without specifying any particular type of system. We will
now turn attention specifically to complex systems in which regulation
is involved =~ where one part of the system can be thought of as
attempting to regulate some other part. By this we will mean that
the regulater, which we will denote for brevity by R, and the part of
the system being regulated against, X, jointly determine an cubcome, Z,

and that the gnal of the regulator is to force the outcome {or out-
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comes, if the process is an ongoing one) to be favorable to R, by
some [pre-estdblished] criterion. The regulator tries to get its own
way, in other words, in an outcome in which it is only one of the
determining factors. The situation is represented in Figure 37.

We will impose few constraints on this very general formulation,
leaving specialization for later. In particular we will leave open
the questions of what sort of machinery is in the boxes marked X and
R in the diagram above, and of what factors affect X and R, as
indicated by the entrant arrows. We will also leave open the question
of whether X is passive (as in the case of an automobile being
regulated by a human pilot) or antagonistic to R (as in a game-
playing situation in which X is trying to regulate R, just as R is
trying to regulate X). The only constraints we will impose are as
follows:

l. R, X, and Z are variables taking values from the sets

R irl, Tos ecoey rm} s X = ixlp Xpy eeey Xn} , and

Z {Zl, ZDy eosey Zp} respectively.

2, The system operates on a dlscrete time basis.
3. The outcome is determired by R and X through a mapping f,.
That is,
f, : Xx R —» Z,
Seen in this general formulation, regulation is a pervasive feature
of everyday life, ranging from simple acts such as taking an aspirin

to ward off a cold te highly complex phenomena such as government

regulation of interstate commerce. With several examples we will




| Controlled
Part, X

\

Regulator
R

Determiner of
Outcome, Z

Figure 37.

————> (Qutcome)
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next illustrate different forms regulation can take.

One basic type of regulation is essentially an attempt on R's
part to destroy X's ability to affect Z, by cutting off the effect-
path from X to Z - to destroy the channel from X to Z, as we might
put it. This type of regulation is usually a single-occurrence
phenomenon, in which R takes one action to destroy the channel and
thereafter need take no further action. The installation of stop
signs at a busy intersection to minimize the probability of accidents
there, and the deposit of a dime in a parking meter to regulate
against ticket-issuing policemen, are examples. Examples of single-
occurrence regulation in which the goal is preservation of constancy
are: (1) assuring temperature constancy of an object by dropping it
in the bottom of the ocean, (2) assuring constancy of room temperature
by installing an automatic air conditionmer, and (3) stabilizing the
political climate in a totalitarian regime by imposing a news black-
out on the press and radio. All of these examples illustrate how R
can regulate against unwanted disturbances by incapacitating the
mechanisms by which they would otherwise affect the outcome.

Regulation of quite a different type, and a type more interesting
for this study, takes place when R cannot block the channel from X
to Z but can unly attempt to counteract the effect of X by appropriate
counteraction of its own. This type of regulation is usually more
dynamic than the type just mentioned. The goal of R can take the
form of maximizing a probability, &s when a doctor attempts to
maximize the prubability of "Patient Lives" when regulating against

diseases, or when a fencer triles +0 maximize the probability of
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"Avoids Being Hit" when regulating againet his oppcnent. The goal

can also teke the form of preservaticu of constancy, as in (1) a
thermostat maintaining constant room temperature despite changing
weather, etc., (2) the driver of an autcmobile maintaining a constant
speed despite hills, winds;, and the like, and (3) in an cpen society,
a government countering hostile propaganda with propsganda of its own,
to preserve domestic tranquility.

The distinction drawn here between single-cccurrence regulation
and dynamic regulation, while useful, is somewhat artificial and
arbitrary. For if a regulator takes a sequence of actions, the
sequence may be viewed as many actions in an ongoing, dynamic process,
or on the other hand as one choice of strategy or cme trajectory. The
distinction between the goals of maximizing a probability or preserving
constancy is also arbitrary; nevertheless it is useful.,

About the case of single-occurrence regulation there is not
much to be said other than that if R selects one action out of a set
of possible actions; and if that action is appropriate (i.e., is
successful) while the others are not, then R needs information to
moke the selection. If a regulator selects appropriately to a degree
better than chance, it must do so on the rasis of informatiom about
which choice is appropriate. To select one action from a set of N
possible actions; when all are equally attractive, requires log
N bits of information.

If the selection is recurrent, so that the concepts of informa-
tion theory become meaningful, much more can be said, We will deal

2 e

nenceforth with ©

% " " -
rlasa af "Avmamins .
his clazs of oY namic” regulat

ra2. which take on
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values as steps in a continuing process. Some regulators of this type
deserve only brief mention; these are the regulators which take
several actions (or values) but do so in an autonomous, deterministic
way, such as the traffic lights which regulate traffic flow by their
repeated cycles of red and green, We will be concerned, on the other
hand, with regulators which must take in information and act
appropriately on it in order to satisfy their goal criteria. Among
situations which we normally regard as involving regulation, this
situation is by far the predominant one,

We characterize the regulatory situation, then, as one in
which to achieve its goal the regulator must (1) take in information
by sensing some variables outside itself, (2) select from its
repertoire of possible actions the one which is appropriate for
attaining the goal, and (3) take that action. The process of
regulation breaks up naturally into these three components, and the
quality of regulation is governed by all three (of which we shall
have more to say quantitatively later).

Information plays an important role in all of these steps; this
is clear in the example of the fencer. To protect himself from his
opponent, he must (1) take in visual information about his opponent's
actions, (2) call on his knowledge and past training to select
appropriate countermoves, and (3) perform the necessary maneuvers,
which serve as input information for the opponent. Clearly the
fencer's regulatory ability is dependent on all three ; if his input
channel capacity is impaired (by dim lighting, poor eyesight, ete.),

or if his selection is impaired (by lack of training, or drug-induced
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befuddlement), or if his perfurmance of the selected mareuvers is
impaired (by fatigue or physical weskness), he will bte no match for
an opponent not so disabled,

Similarly in the example of an automobile driver; when rain or
fog cuts down the necessary input information, or whsn selection is
impaired by fatigue, or when the capability for maneuvers is reduced
by ice on the highways, the instinctive reaction is to zlow down the
vehicle in recognition of the fact that one's ability to regulate
effectively is reduced. ‘

The main factors opposing successful regulation, then, can be
characterized as

(1) lgnorance, or lack of input channel capacity,

(2) 1lack of insight, or lack of "computaticnal” chanmel
capacity transforming input informaticon into
appropriate outputs,

(3) impotence, or inability to influence the outcome
successfully due to a lack of opticus, i.e. lack of
output channel capacity.

In the next section we will investigate regulation in greater
depth and attempt to quantify the qualitative assertion that infor-

mation is of primary importance in any analysis of regulatiom.



178

5.2. Quantitative analysis of regulation

5.2.1. Regulation when the goal is to maximize a probability

We consider in this section and the next a mapping f, : X x R—>
1
Z, and a continuing process (either finite or infinite in length) in
which X and R take values at time * and le determines the outcome

at time t. For example, le might be as follows:

1 1 2 3 1

R 2 5 1 2 L

313 5 1 3 (2,)
Suppose that R's goal is to force the outcome to be "1". We
can simplify the problem facing R by mapping Zl into Z by the rule:
Z=11f Z, is an outcome acceptable to R, Z = O otherwise. This

gives the following mapping f, : X x R > Z.

X
£, 1 2 3 4
1 1 0 0 1
R 2 0 1 0 0
3 0 0 1 0 (2)

We will assume in this section that the distribution of X's choices
is fixed and independent of R; that ie, we assume that N(X) or P(X)

is given. Under this assumption, what can be said about R's ability
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to force a desirable outcome? For concreteness, suppose X takes
its four values equiprobably; then R can force a "1" half the time by
perpetually taking the value R = 1., In fact if R chooses values
independently of X, so that T(X : R} = 0, it is easy to show that

this is the best R can do. To show this, we define the following:

D
&

1]

Prob{LZ?-l}

. - o 3 ’t = o
PJ = P:;ob {Z l‘k under the condition {P Ty for all ’z:}
P¥ = max Pi }
i=1l
r¥ = the numerically lowest value in the

set {.rk a Pk L P*.}e
The definition of r¥* is a bit peculiar in order to single out only

one of the set of "best" walues.

Theorem V. 1

If f, : XX R ~>Zwhere Z = 1 implies an cutcome
favorable to R and Z = O implies an outcome not favorable,
and if P(X) is fixed and T(X : R) = O, then the expectation of

a favorable outcome cannot exceed P*,

2 P(Xj,ri)

<Xj,Ty> € f;1 (1)

z P(ry) * Plx;)

<x4,ry> € f;l (1)

Proof':

P

[T
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m
= 2 P(ry) Py
1=1
m
s > P(ry) + P* < P*
1=]

Equalities are established if P(r¥) = 1.
Q. E. Do

The theorem says that if R is to choose values independent of
X's values, it can do no better than to perpetually choose the value
r*, Thus if P is to exceed P¥, R must take values which are correlated
with those of X; i.e., there must be transmission between X and R.
Single-occurrence regulation corresponds to the choice of R'c = r*
for all T , and if dynamic regulatior is to improve on that, there
must be a channel linking X and R.

We must next construct a measure for the regulation imposed
by R. We denote the measure by 2% The simplest measure would be
Py = (P - P*); however, this measure would not differentiate between
one regulator raising the probability of a favorable outcome from
0.8 to 1.0, and another raising it from 0.05 to 0.25. Intuitively
we feel that the latter has attained a more spectacular success,
and that P1 should be proportional to log-gg_-. As a compromise

between these contradictory demands, we define p1 @8 follows:

P1* IP-P*I log.ﬁﬁp.
When P* = 0, that is when no values of R can lead to a favorable

outcome, the whole notion of regulation becomes absurd and A1 is un-

defined.

‘N



=
o
=t

In the example above;, R can guarantse the desired outcome,
that is, can make P = 1, by selecting its values according %o the

fellowing mapping:

In this case, P = 1, P¥ = 0.5, £y = ©:5; and "X : R) = 1.5 bits.

With the above definition cf fﬁf it follows immediately from
theorem V.1 that T{(X : R) = O implies A= C. Can P, and T{X : R) be
put in any other quantitative relation? We propose the following:

Conjecture:
IolSE.T(X:R).

The conjecture can be supported as follows. When one tries to
construct an fz and a distributicn EﬁX,R) for which the ratic
f:l/T(X :R) (or fl/T) is as large as possible, it scon appears,
through trial and error, that the ratio is largest when both r1 and
T are very small. T is made small by making the columns of EKX,R)
nearly proportional. The mapping most favorable to regulatnion under

these conditions is apparently an fz of the following form,

X

fz l 2 3 ano m‘l m

1 1 0 0 o 0

2 o 1 90 2 0

3 o 0 1 3 0

R ¢
m-1 o 0 0 1 c
m o 0 0 o 1 (23
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gince in this case P* can be made small while P can be made considerably

larger with only a small T(X : R). The assignment N(X,R), with

(1 1

~— 4€&(m - 1) if X = R; €K~=5

o’ P
By R ﬂ

1

> -€ if X # R

km

has the following characteristics:
(1) The columns are nearly proportional, suggesting a
minimal T(X : R).
(2) P* is as small as it can be with one 1 in each colum
of £, and (P - P¥) is proportional to €.

With this f, and this N(X,R), p, is computed as follows:

P = m [igd- (m-l)e] = llﬁ +m(m-1)e
pr= 1
m
i, m{m-1) e
1 m(m-1)e log I
m

m(m - 1) ¢ log [l-l- e (m - l)e]
For very small ¢,
L1~ m(m - 1) e[ma(m - l)e] log e
= m3(m - 1)°€? 1log e.
The transmission is computed as follows.
T(X : R) = H(R) - By(R)
= log m + { (-—Eﬁ- + (m-1)me ) log (—rlﬁ— + (m-1l)me)

+ (m-1) (-%r- - me) log ("%T‘ - me)}
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= Jogm - logm [.,,IJﬁ_ = (m=i)me + (m-1) (_.%_ - me)l
+ {1+ (e e Y[ (m-2)nPe - Lm-1)2me24, o0
[(m-l) (1-ne )][ -me - mte? - ...]} log e

—%»{%(mwl)m5e 21{ 10g e 4 oee

%(m-l)m’4 c® log e.

4

The ratio /91/1‘ is

/_)_J; = m3(m-l)2é2 log e
T 5 (m-1)m* e< log e

= o( Bl ),
m

Consequently, /->1/T is less than 2 for any m. If this distribution
is indeed the type that maximizes FJ./T’ as there is good reason to
believe, then p) =< 2 T(X : R) always.

The transmission between X and R is thus seen to he an upper
bound for regulation when the goal is maximizing the probability of a
particular outcome or set of outcomes; if the goal is minimization
of a probability, the same sort of analysis holds, for to minimize
the probability that an event will cccur is of course the same as
to maximize the probability that it will not.

We will next consider regulation when the goal of R is to

preserve constancye.

5.2.2. Regulation vhen the goal is to maintain constancy

In many situations involving regulation;, the goal of the
regulator is to preserve a variable or varisbles at as nearly
a constant value as possible. The vast majority of the homeo-

static mechanisms occurring in plants and animals are of this
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type, of course; for example, the mechanisms maintaining temperature
and blood sugar levels in humans, or of moisture content in plants.
Many mechanical regulators, such as thermostats, automatic volume
controls, and automatic airplane pilots, are also of this type.

As has been pointed out by Ashby6y regulation in such cases
can frequently be viewed as blocking the transfer of information from
X to Z. X takes various actions which would show up as variations in
Z, were it not for appropriate counter-actions taken by R. If R is
completely successful, variations in Z are completely eliminated, with
the result that an observer of Z would obtain no informstion at sall
about the values taken by X or R. The goal of R, maintainence of con-
stancy in Z, can thus also be seen as the suppression of entropy at
the output.

We can consequently define a new measure for regulation, P
based on how much output entropy is eliminated by R's actions. To
meaningfully compare the output entropy with R acting and R not acting
(R fixed at some value, in other words) it is necessary to assume, for
this section and most of the next, that X is passive and does not
change its actions according to how R behaves. We will consider;, then,
situations in which the distributions for X are fixed, the process is
a continuing one (finite or infinite), and the outcome at time ~ is
determined by X and R at time <t ; f, : X x R —»> Z. For example,

f, might be as follows:

X
f, 1 2 3 N
1 1 3 1
R 2 5 1 2 N
3 3 5 1 3 (2)
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Suppose X takes its values independently and equiprobably, so
that P(x;) = 1/4, 1 =i < 4. What will be the cutput entropy if R is
fixed at some particular value? If RT = 1 for all T, the outcomes
1,2, and 3 will occur in the frequency ratios 2 : 1 : 1l, and the out-
put entropy will be

B(z) = - [g/h log 2/h + 1/k 1og 1/4 + 1/4 leog 1/#] = 1.5 bits.
Similarly with R* = 2 for all <« we obtain H2(2Z) = 2.0 bits, and
with RT = 3 for all <, we obtain H3(z) = 1.5 bits. The regulator
can hoid the output entropy to 1.5 bits by persistently taking values
1l or 3.

Now we ask, by how much further can R decrease the entropy
through appropriate actions? Clearly the ocutput entropy, H(Z), can

be dropped to zero if R takes its values in accordance with this mapping:

If regulation is measured by this further decrease in entropy,
it comes to 1.5 bits.  The regulator, by selecting values which are
appropriately matched with those of X, can succeed in maintaining the
output constant.

Iet us define the following:

H = H(Z)

H' = H(Z) under the condition iRT =rj for all T .

m .
H* = min { H }
i=1

r* = the numerically lowest r; in the set iri [ B = H*} .

~» = H* - H.



, then, is a measure of the amount of ocutput entropy which
f

R suppresses by acting, beyond the amount which it could suppress by

perpetually taking the value r*. We will proceed next to expand the

expression H¥ - H, to show the relation of p to ™R : X).

We will denote with a superscript * these quantities which

obtain when R is fixed permsnently at r*. To get another expression

equivalent to H¥, we proceed as follows.

H* = H*(Z)

= H*(X,2) - H*Z(x)

= H*(X) + H*x_(Z) - B (%)

Now H*(X) = H{X), since we have assumed that the distribution for X

is not dependent upon R's values. Also, H*x (2) = 0 since Z is a

determinate function of R and X. Consequently

H* = H(X) - B*, (x).

To get an expressicn equivalent to H,

H = H(R,Z) -HZ(R)

™R : Z) + HR(Z)

™R : Z) + HR(X) + n’Ryx(z) - HR’Z(X).

Since HR X(z) = 0, this simplifies to
3

H= T(R: 2)+ HR(X) - HR,Z(X).

The difference between H*¥ and H is L

p = [H(x) - H*Z(x)]- [T : 2) + B(X) - HR’Z(X)]
po= MR :X) - TR :z) o+ [H 00 - B ] .

let us examine these terms in turn. T{R : X) is of course a measure
of the coordination between R ard X. It is bounded by H(R) and by
H(X), which are indicators of the "activity" of R and X. 1In fact if
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R takes values according to a mappring M3 X —> R, then
T(R : X) = H{(R). The first term in the expression for o » therefore,
indicates the statistical dependence of R on X.

The next term, T(R : Z), can be interpreted as the amount of
information one obtains about R by cbserving Z. Earlier it was
remarked that this quantity is small tc the degree that R regulates
successfully; T(R : Z) is bounded by H(Z), the output entropy which
R tries to minimize.

The last two terms, HR’Z(X) and H*ZI(X), can best be interpreted
in terms of fz. If fz has the property that for any rys fz maps
X x ry one-to-one into Z (that is; no Ty -Tow of fz has any repeated
entries), then HR Z(X) = HE(X) = 0, since given R and Z there is no
uncertainty about,X. In this case,

L=T(R : X) - T(R : 2)
and clearly p < T(R : X) always. This inequality is closely related
to, but not identical with, Ashby's "Law of Requisite Variety".

Back to interpreting the last two terms, it should be clear
that HR,Z(X) and H*Z(X) are nonzero only when there are rows of f,
(where rows correspond to values of R) with repeated entries, as in
the example on page 184 . Formally, let

k number of X-values in the set

& Xy ‘ fz(xj, ry) = zpik

k = max k«}
’in?pﬁlp

K = log ko

ip

Then no row of fz has any z repeated more than k times, and
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consequently Hy Z(x) and H*Z(X) are both bounded by K. We will
2

occasionally refer to the number k as the multiplicity of- the mapping f,.

The contribution to e is the difference between By Z(X) and

H*Z(X) ; the difference is of course bounded by K, and it c;.n be posi-
tive or negative. Whenever HR,Z(X) is positive, H*Z(X) is necessarily
positive, so the difference is in fact always less-tha.n K, if K > O.
We collect these relationships in the following theorem:

Theorem V.2

P = ™R : X) - T(R : Z) + HR’Z(X) - H*‘Z(X)]
/osT(R : X)+ K
The amount of regulation which R can impose is limited by the trans-
mission between R and X, plus a quantity HR,Z(X) < K.
Theorem V.3
T(R : X) =0 => /<0, regardless of K.

Proof':

We need only to show that T(R : X) = O implies HR Z(x) = H*Z(X).
2

Suppose T(R : X) = O.
m .
"
H X)= P(r.,) H (X
o= IR B ()
where superscript i is used to indicate quantities which are

defined under the condition { R't = ri for all < } « The identity

Hi(x) + H; (z) = Hi(z) + H;(X)
together with the fact that .}Si((z) = 0 gives
HE(X) = B (x) - E(2).

Since the distribution of X does not depend on R, Hi(x) = H*(X).

Substituting in the first equation, we obtain




By 7 (X) = T Plry) [#x) - #2) ]
_ )
=E+(X) - 3 Blry) E(2)
On the right is a weighteé—;um of terms each at least as large
as H*(Z). Thus
HR,Z(X) < B*(X) - H*(z).
The right side of this ineéuality is H%z(x)g for

HE(X) = H¢(X) + B(2) - B#(2)
and Hgg(z) = 0, Q. E. D.

These last two theorems are cental to the understanding of
regulation. The first shows that there is a very definite bound
on regulation, this bound being the transmission between the ragulator
and the regulated variable, plus an additional term which can be thought
of as indicating the congeniality of f, to regulation. The second
theorem says that regardless of the mapping, unless the regulator is
coordinated with the part it is trying to regulate it can do no better
than to perpetually take the value r¥; taking any other values can
only degrade the regulation when T(R : X) = O.

The situation is similar to that discussed earlier, where the
goal of R was to maximize a probability. In both cases the goal can
be partly attained by permanently taking a "best" value r*, and any
improvement over that can only take place if the regulator is coor-
dinated with the variable it hopes to regulate. Morecver the improve-
ment is limited by the amount of that coordination.

These results can be generalized to include situations in

which the goal of the regulator is to cause, at the output, a
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deterministic cycle of events, and to guard that cycle against
disturbances from X. The goal is to preserve constancy of a
repetitive output, in other words - a heartbeat cycle, say, or the
wing-flapping cycle of a bird. Such situations may be encoded into
a form in which the goal is constancy, as Before, but it is more
convenient to deal with them directly throwgh a generalization of
our previous results.

We will consider, therefore, supervariables X, R, and Z
and the mapping £, : X x R° —> 2", and we will define quantities
analogous to those used earlier in this section. Whereas before we
used a superscript i to indicate quantities defimed under the
condition { R’c = ry for all =« } , here we use superscript j to
indicate the condition {ﬁ = (F)J } , i.e., the value K takes is the
Jth member of the set of all possible values for R. (The members can
be numbered, because the set of values is countably infinite as shown
by the numbering scheme suggested below, when Rr takes one of the

values 1, 2, or 3:

J (r)J

0 l, l, l, lp ceo
l 2’ l’ l, l, LR
2 3, l} 19 1y ees
3 l, 2’ l;‘l, LELE

and so on. In general,

o9

j = 2 (rk-l) (3k_l) where r* = Prk(;),j')
k=1
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Now, in a manner strictly anszlogous to the development before,
ve define
B = 5(E)
7 = 5X(Z) under the condition { R =:(;}j } .

* . _—
. min '{ HLJ } s Or g.l.b. ﬂ_ p-d } if there is no minimum.
J

?l'
jzl =1
}

L}

-~

— — i —_— * . *
(r)* = the (r)j with smallest j, in the sei { (r)j ! g = g~
f’L :HL* -HL

Some clarification may be helpful here. When we indicate that the

output information HL(Z) is positive, this is subject to two interpre-
tations. One is that even if we are given all preceeding values of Z
in the sequence { Zl, Ze, N Z'r 5 eesy z" } we are nevertheless
not certain what will come next, even in the limit as n —» oo .
Another interpretation is that in a number of "expsriments" each
yielding an infinite sequence {'le Zz, seoe } , our uncertainty
as to which sequence will occur in any particular experiment is infinite;
that is, we cannot even designate beforehand a finite set of such se-
quences into which the new sequence must fall. This second interpre-
tation should make it clear that the condition { R = (¥) 3} implies
HL(ﬁ) = 0; that is, the regulator is deterministic. A deterministic
regulator, undergoing deterministic behavior, can minimize the infor-
mation in the output sequence by an auspicicus choice of (;)j. The
degree tc which the information is further reduced ty non-deterministic
behavior of the regulator is measured by /oil

The reader should have little difficulty in seeing that cur

development of thc expression for » serves alsc to yield an expression
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for f:IE one has only to superscript all the expressions with L
throughout. The result is given in the following theorem:
Theorem V.h

pL=tt®: %) -T@ : D) + [ By ) - 5 ) ]

/AL sTL(ﬁ : X) + K
The amount of regulation which R can impose is limited by TL(ﬁ : X),
plus the quantity Hﬁ’z(i) < K. The situastion is exactly analogous
to that of theorem V.Z2.

Similarly the proof of theorem V.3, with only minor changes
such as the substitution of P [(;)J ] for P(ry), etc., serves as
proof for the following:

Theorem V.5

TL(ﬁ :X)=0 = pL < 0, regardless of K.

This completes our generalization. The point of this chapter is Jjust
this: regulation, whether the goal is maximizing or minimizing the
expectation of a particular set of outcomes, or is the suppression of
entropy, H(Z), or information, H'(Z), can be partly attained by the
choice of auspicious permanent values or determimistic sequences - by
single-occurrence regulation, in other words. But to effect any
improvement over that, the regulator must coordimate his actions with

the system being regulated against, and the degree of that coordination

sets a bound on the regulation which can be achieved.

5.3. Important special cases of regulation

The last section indicated the importance of the quantities




T(R : X) and TL(ﬁ': X} to regulation. Few consivaints were placed on
the general formulation, and in particular nothing was mentioned about
which variables acted as input to the regulator R. Iirn this section we
will briefly examine some common regulatory situations in the light of

the previous results.

5¢3.1. Error-controlled feedback regulation

It is very common in texts on servomechanisms tc see a diagram
of the sort shown in Figure 38; X(s) is the "command" or reference
input, E(s) is the "error" signal, and Y(s) is the "controlled output"
signal. The servomechanism is generally considered successful if the
error signal is kept within prescribed limits, or its root-mean-square
value is lower than a given number, or some other criterion is satisfied.

From our point of view, the goal of the regulatory mechanism is
to keep the error signal as nearly constant as possible. Preserving
the topology but changing the names of the variables, we can redraw
the diagram in our terms as shown in Figure 39. The mapping fz corre-
sponding to the subtraction device in the servomechanism has multiplicity
one, i.e., Hh’z(x) = 0. Consequently, from theorems V.2 and V.h,

P = T(R : X)

= TR : D).

This configuration has the interesting property that R receives
information about X only through Z, and at the same time R is trying
to suppress entropy at Z. The regulator thus appears to be cutting off

its own source of information and lowering its own efficiency. Clearly

it cannct be fully successful at eliminating H{Z), for if H(Z) were zero,
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HL(Z) would be zero and so also would HLKﬁ), by theorem IV.12. If
HL(i) were positive we would have a contradiction, because the subtrac-
tion device, if one of the two inpute is known, is net an information -
losing mechanism. From this we conclude that regulation can never be
fully successful in an "errcr-controlled” regulator, except in the de-
generate case of a deterministic input

What is perhaps more surprising is that /JL is necessarily zero!
The "error" sequence must contain exactly as much information as the
input sequence, regardless of the activity of R. To see this, we note
that given a long sequence of Z, one can deduce the corresponding se-
quence of R (R, being passive, cannct generate informaticn). And since
f, has multiplicity one, knowing R and Z is sufficient to deduce X.
Consequently from Z one can reconstruct X; the reverse is alsc true, sc
HY(X) = HY(Z). It is for this reason that we hedged above in saying
that R appears to be cutting off its own source of information; in fact,
it doesn't. The regulator is a mere recoder, preserving the information
but transforming it to a form with possibly lower entropy. The regu-
lation r is the difference between the input entropy and the error
entropy,

P = B* (2) - H(zZ)
= H(X) - H(2)

since H*¥(Z) = H(X) whenever the multiplicity of f, is cne.

If there are no memory-constraints in the input sequence; i.e.,
if HL(i) = H(X), then the regulator's task is completely hcpeless, since
such a sequence cannot be converted to a form with lower entropy without

losing information. Consequently pP= Oe.
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This observation can be generalized further: if HL(i)‘= H(X) -1,
so that the input sequence has a memory-type constraint of M bits per
step, then /o cannot exceed M, and consequently

H(X) - M < H(2) < H(X).
To show this we need only note that HL(Z) = E°(X) = H(X) - M bits per
step; the entropy H(Z) is minimized by encoding the information into a
form with no memory constraints, i.e., a form with H(Z) =-HL(Z), since
H(Z) < HL(Z) is impossible. Therefore

H(z) =z H(X) - M
and P < HX) - [m(x) - M} =M.

The regulation is limited by the amount of ['per—step] sequen-
tial constraint in the input sequence.

It might appear that P is limited by the channel capacity of R,
and thazt if the regulator is to achieve the maximum regulation of M
bits per step, it must have a channel capacity of M bits per step, or
more. This is not necessarily so. If the input is deterministic, for
example, then M = [ H(X) - HL(J?)] = H(X), and R can achieve regulation
f>= M by following a deterministic sequence absolutely identical to
that of X. R can be a perfect regulator, that is, and can keep the
error sequence absolutely constant, even with a channel capacity of zero.

However it is true that f’ is limited by the entropy of R, since
P = T(R : X) < H(R), and therefore if R is to regulate it must take
more than one value. We might say that regulation is limited by the
"variety" capacity of R.

To summerize: from the point of view of information theory, an

error-controlled feedback regulator cannot reduce the information in the
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error sequence; it can only take advantage of sequential constraints in
the input to reduce the entrcpy of the error sequence. If there are no
such constraints, regulation is impossible.

We are led to suppose, therefore, that the great variety of
applications in which error-controlled feedback regulators prove useful
all have one thing in common: the input sequences have sequéntial con-

straints, and probably very strong constraints.

5¢3.2. Feed-forward regulation

In the error-contrclled regulator, R got its information about X
by way of Z. In the configuration we will discuss next, R gets this
information directly from X. This configuration, which we will call
feed-forward regulation, is represented in Figure L). This is the type
of regulation which occurs when one starts to fall but catches himself,
or when an army which has obtained access to the enemy's battle plan
takes appropriate countermoves, or when an automobile driver activates
his own brakes whenever he notices the car ahead braking.

In most practical applications, there is a delay between the time
the regulator obtains information about X and the time it acts on that
information. We will take this into account by assuming that X does not
have an immediate effect on R but does have an effect on R one time unit
later, i.e., that R' depends on X', X, ooy X% but mot on X' We will
assume that R° is in fact determined by X', X°, .o., X' L.

The constraint between X and its predecessors in the X-sequence

x* x2 coop Xt > x’t); in the limit it is [H(X) - HL(;?)]=M,
By the Collapsing Theorem for Transmission,

<T-1 <

T LX) =T, X, e, X > 1 x0)

T(R



>

Figure L4O.
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since éris a function of the earliier X's. Thus we have

(R : X)s<M
and consequently f’sM + K, where ZK is the multiplicity of the
mapping fz.

The assumed time delay thus leads te the conclusion that /o
can only be positive when there is memcry constraint in the input se-
quence, and ’o is limited by that constraimt in the same way it was
limited in the error-controlled feedback regulator (except for the add-
itive term K; which in the feedback case we assumed was zero). This is
only common sense, of course; if R is to regulate on the basis of the
past history of X, there must be some correlationm between that past and
the present value which R is trying to counteract.

If fz has multiplicity one, then just as in the case of the feed-
back regulator R cannot reduce H(Z) to zero except in the degenerate
case of a deterministic X. And just as in that case, and for the same
reasons, the channel capacity of R is not necessarily a bound for P

If fz has multiplicity one, then surprisingly enough /9L is
necessarily zerc, Jjust as for the feedback regulstor. That is,

BY(X) = 5M(Z)
and no action on R's part can reduce the information at Z. To see this,
suppose that one has been given the values for Xl, ng ooy X ) » and by
Observing Zt he wants to deduce XT. This is always possitle; since if

Xl’ 0..’ XT.-l

are given, RT can be calculated, and when 2% and R® are
known, there is no uncertainty about XT’(when f, has multiplicity one).
Consequently if one is given some early values of X and then an indefi-

nitely long sequence of Z-values, one can deduce ali the corresponding
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X-values. The same is true if the roles of X and Z are interchanged,
so the X-sequence and Z-sequence must carry the same amount of‘infor-
mation, regardless of R.

The similarities between regulation in the feedback and feed-
forward cases are striking; in fact there is no substantial point on
which they differ. Neither is able to block information, H;(Z), at all
when f, is of multiplicity one, f’ in each case is limited by sequential
constraints in f; and the regulators in both cases succeed, if they
succeed at all, only by making use of those constraints. Neither type
is capable of "perfect" regulation, that is, maintainence of absolute
constancy at Z, except in degenerate cases.

The close relationship between the two is apparent also in the
difficulty of deciding whether to classify a given example of regulation
as feed-back or feed-forward. When one is following the motions of a
tennis ball with his eyes, for example, are eye-movements guided by
information about the position of the ball, or by information about
the angular error? It would be difficult to say.

When the quality of regulation achievable by feedback or feed-
forward regulation is not sufficient, another type which we shall call

"parallel" regulation is often used.

5¢3.3.. Parallel regulation

In parallel regulation the regulator does not wait for X to
affect Z before starting to operate; it makes use of information from
the same source that affects X, as represented in Figure 41. The box D

represents a primary source of disturbances which affect X and R.
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This is the type of regulation in which R is frequently thought
of as "anticipating" X, so that the regulatory action is simultanecus
with the action of X. A driver sees a child run into the street and
applies his brakes at the same time as the car ahead; a homeowner hears
of an imminent cold wave and starts up his furnace; a schoolteacher
smells fire and leads her students out of the building. As Ashby has
pointed out, many of our senses have been developed precisely to get
advance warning of disturﬁances, so that regulatory steps can be taken
before the outcome can be affected.

The job of the regulator, in fact, is to coordinate his actions
with those of X in such a way that the outcome is not affected, no matter
what disturbances arise, or in other words to match X in such a way that
the channel capacity from D to Z is zero. 1In contrast to the other
situations we have studied, this is possible with parallel regulation;
H(Z) cen sometimes be made equal to zero.

Much depends on f,, of course. In the worst possible case, f,
maps X x R one-to-one into Z and all regulation is clearly impossible;

R can do no better than to pick some value ry and keep that value always.
If on the other hand there is a value Zy and a mapping /u.: X - R

such that fz(xi’ /A(xi)) = 7, for all x; € X, then perfect regulation

is possible, for whatever value X takes, R need only take the value /M(X)
to keep the output fixed at Zy e In this case R can attain perfect reg-
ulation by acting in & manner isomorphic with X, for as was pointed out
earlier, if X and R are iscmorphic machines subject to the same input,
they behave isomorphically and T(X : R) = H{(X) = H(R).

To summarize: if for every value x; there is a corresponding




value r; =/x(xi) such that f,(x,, r;) is the same for all i, then R
can attain perfect regulation ( H(Z) =0) by being isomcrphic with X
and subject to the same input.

If £, is of multiplicity one; then ,pL is limited by the channel

capacity of R, and in any case, since TL(ﬁ': X) = Hl(ﬁ),

Thus in parallel regulation, the channel capacity of the regulator is
a fundamental limit on its ability to reduce the output information
rate, a fact which is a pleasant complement to the fact that the capacity
also limits its ability to increase that rate.

This fact, that parallel regulation /oL is limited by the chaunel
capacity of the regulator, is a fundamental link between information
and control; it means that unless the situation is especially foriuitous
(i.e., £, is especially favorsble to regulation so that [thz(x) - H%(X)]
is positive), any attempt at regulation can only succeed to the degree
that the regulator has access to sufficient information, "knows how" to
transform it into appropriate action, and is able to carry out that
action. The channel capacity, and thus the regulation, is limited by

the weakest link in that chain.

5.4, Further remarks

The major restriction on the quantitative results in this chapter
is that they were derived under the assumption that X was not affected
by R; yet much of real-world regulation fits that assumption. Regulation
in complex systems is frequently in one of the three forms we have dis-

, often with X and R being complex systems and Z being a vector

with components; the theorems developed above hold just as well in that
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case as when X, R, and Z are all very simple. Of course it requires
little imagination to concoct regulatory schemes which appear to be
more complex than any of the three basic forms, but further inspection
often shows that a scheme apparently more complex may be recoded into
one of the basic three or a simple combination of them.

Our purpose in this chapter, however, has been not to analyze
all common schemes but rather to indicate some of the primary relations
between information and regulation, to quantify these relations as
much as is feasible in a general discussion, and to illustrate these
relations by the three important examples. This, we hope, is a good

start toward a better understanding of regulation.
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